
Usages of Macro of C Programming Language

　
such as Prefix Style Operator

Hirofumi NAKAMURA1 and Takayasu FUCHIDA2

(Accepted October 1, 2019)

Abstract Language processors of C programming language and C++ programming language have pre-

process functions for the compilation. One of the preprocess functions, called “macro,” can do replacement

alphanumeric names and their arguments to defined strings and the arguments in the source code. This

paper shows that the instructions of execution controls of statements and expressions can be expressed such

as prefix style operators using macros in certain situations of source code writen in C or C++ program-

ming language. Specifically, (1): iteration controls and (2): execution/non-execution controls are described.

(1) leads to describing concise and easy-to-understand code by appropriately naming macros. (2) leads to

reductions in keyboard operations related to trial and error. Furthermore, unlike commenting, since the

compilation check is also done on non-executing parts on (2), there is a possibility to notice early that the

non-executable part needs to be modified.

Keywords [C programming language, C++ programming language, Preprocessor, Macro, Prefix style

operator]

1　 Introduction

Language processors of C programming language1)

(hereinafter briefly called C and including C++ pro-

gramming language2), hereinafter briefly called C++,

which has upper compatibility with C) have prepro-

cess functions for the compilation. One of the pre-

process functions, called “macro,” can do replacement

(called macro expansion) alphanumeric strings (called

macro names) and their arguments to defined strings

and the arguments in the source code (hereinafter called

“code”). Each defined replacement which has alphanu-

meric name and replacement rule is also usually called

macro.

Using macros bring (a): partial omission in code

description3, 4), (b): syntax abstraction5) and (c):

omission of overhead of function call3, 6). In this pa-

per, we propose several examples of effective macro uses

contribute for (a) and (b).

Specifically, in section 2, we show examples so that

macros with meaningful names can briefly describe in-

struction of repetitive control in a code such as prefix

style operator (hereinafter briefly called “operator”).

Furthermore, in section 3, we show examples so

that macros can briefly describe the instructions of

execution/non-execution control in the code on the trial

and error or debugging during a program development.

We compare our method with existing similar uses

of macros in Ref. 7) and the Linux code8) etc. in both

sections.

2　 Instruction of iteration such as operator

2.1　Concrete examples

There are cases where the instructions of iterations

can be written such as operators.

1 General Education Division, National Institute of Technology(KOSEN), Miyakonojo College
2 Graduate School of Science and Engineering, National University Corporation Kagoshima University

第54号 Usages of Macro of C Programming Language such as Prefix Style Operator －1－

At first, we show application examples to the follow-

ing code†1 by the sweeping-out method for a inverse

matrix.　　

for(i=0; i<N; i++)
for(j=0; j<N; j++)

inv[i][j] = ((i==j) ? 1.0 : 0.0);

for(i=0; i<N; i++){
w = 1.0/a[i][i];
for(j=i+1; j<N; j++) a[i][j] *= w;
for(j=0; j<N; j++) inv[i][j] *= w;
for(j=0; j<N; j++){

if(i!=j){
w = a[j][i];
for(k=i+1; k<N; k++)

a[j][k] -= a[i][k]*w;
for(k=0; k<N; k++)

inv[j][k] -= inv[i][k]*w;
}/* if */

}/* j */
}/* i */

For this code, if you define†2 macros such as

#define F(v) for(v=0; v<N; v++)
#define Fi F(i)
#define Fj F(j)
#define Fk F(k)

with F in common or

#define Fi for(i=0; i<N; i++)
#define Fj for(j=0; j<N; j++)
#define Fk for(k=0; k<N; k++)

with no other common macro, the code can be

described†3as follows†4 .

Fi Fj inv[i][j] = ((i==j) ? 1.0 : 0.0);

Fi{
w = 1.0/a[i][i];
for(j=i+1; j<N; j++) a[i][j] *= w;
Fj inv[i][j] *= w;
Fj{

if(i!=j){
w = a[j][i];
for(k=i+1; k<N; k++)

a[j][k] -= a[i][k]*w;
Fk inv[j][k] -= inv[i][k]*w;

}/* if */
}/* Fj */

}/* Fi */

Whether or not to define macros used fewer times is

arbitrary. However, if you define further macro such as

#define Fij Fi Fj

with Fi and Fj , the beginning of the code is also pos-

sible to describe as follows, where naming of macros

and how to put spaces and line breaks in the code are

arbitrary.

Fij inv[i][j] = ((i==j) ? 1.0 : 0.0);

In the above examples, a character F reminiscent of

“For each” is used in F and Fi etc.

Instead of F portion of the macro name Fi etc., us-

ing A reminiscent of “All” or E reminiscent of “Each” is

arbitrary, for exmaple A, Ai, Aj and Aij.
Compared to using only F(…), using Fi and Fj etc.

is more concise. However, using F(…) is also arbitrary.

When iterations whose final values of individual con-

trol valuables are different are used, for example, if M

†1 For example, we assume #define N 100 , double a[N][N], inv[N][N], w; and int i,j,k; .
†2 Where, to define control variables or not in iteration statements is arbitrary.
†3 For your information, if you define a macro that can describe array a[i][i] such as a(i,j) or aij (fot examples, by with #define
a(i,j) a[i][j] or #define aij a[i][j]), the code will be more concise and closer to the mathematical expression. Further more,
when you want to check the ranges of array index’s values on debugging, you can finish by only one place modification in the macro defi-
nition such as #define a(i,j) a[(0<=(i)&&(i)<MAX)?(i):printf(”ax:%d\n”,(i))][…] instead of writing same strings throughout
the code.
†4 Specific examples of the proposed methods are written in the blue square frames.

－2－ 中村博文・渕田孝康 都城工業高等専門学校研究報告

times repetition is also used, some macros defined such

as

#define FvV(v,V) for(v=0; v<V; v++)
#define FiN FvV(i,N)
#define FjN FvV(j,N)
#define FiM FvV(i,M)
#define FjM FvV(j,M)

or

#define AvV(v,V) for(v=0; v<V; v++)
#define AiN AvV(i,N)
#define AjN AvV(j,N)
#define AiM AvV(i,M)
#define AjM AvV(j,M)

can be used. The macro names of here, such as AiN, are
examples of namings reminiscent of universal quantifier

such as ∀ i ∈ {k
∣∣ 0 ≤ k < N, k ∈ N}.

The following example is the tracing of a linear list.

If you define macros such as†5

#define Trace(data, v) \
for(v=data##HEAD; v!=NULL; \

v=v->next)
#define Tp Trace(list, p)

or a macro such as

#define Tp \
for(p=listHEAD; p!=NULL; p=p->next)

by combining, the trace of the list can be described with

Tp as follows.

sum=0; Tp sum += p->value;

When multiple linear lists (in general, similar plural

data structures) are used, it is arbitrary to selectively

use macros named with strings of the parts of each list’s

name. In particular, for the data whose repeat struc-

tures are same, it is arbitrary using a common macro

so that each data name is specified as an argument of

the common macro as follows.

#define Trace(data, v) \
for(v=data##HEAD; v!=NULL; \

v=data[v].next)
#define Tp(diff) Trace(list##diff, p)

It can be used as follows.

sum1=0; Tp(1) sum1 += list1[p].value;
sum2=0; Tp(2) sum2 += list2[p].value;

As described above, you can write instructions of

iterations such as prefix style operators when you usu-

ally write iterations with “for” or “while” statements.

When the same or similar repetitive control appears

many times, the advantage of simplifying the descrip-

tion increases. In addition, there is also an advantage

of macros that it may be possible to make a correction

at only one place, not at each place, when a common

correction is required in the code.

There is a function definition besides a macro defini-

tion as C’s function that makes it possible to write the

code parts, that appears several times in code, in the

form of a name and arguments. Since the definitions of

named function cannot be described inside a function

definition, even when the use points of the functions are

limited to a relatively narrow range of the entire code,

the positions of the function definition may be far away

from the use points. This must be a big burden when

viewing the code. Because macros can be defined also

in the middle of a function definition, you can choose

the positions of the function definitions near where you

use them.

†5 Here, backslash at the end of the line means continuation of lines. The same applies to the following.

第54号 Usages of Macro of C Programming Language such as Prefix Style Operator －3－

2.2　 Existing similar examples

Macros of code part†6

#define loop(n) {int _i_; \
for(_i_=1;_i_<=(n);_i_ ++) {

#define lend }}

in the Ref. 7) used by sandwiching the object to be

repeated between the front and the back. On the other

hand, the proposed description method given in 2.1

does not require posterior parts. Furthermore, since

#define forto(i,from,to) \
for(i=(from);i<=(to);i++)

#define downto(i,from,to) \
for(i=(from);i>=(to);i--)

in Ref. 7) stay in general-purpose with almost all

information instructed as arguments, the proposed de-

scription method given in 2.1 is simpler.

As examples from a large-scale C code involving a

lot of people, we looked for iteration macro definitions

using “for” or “while” statements in Linux code8). For

examples, there exists definitions such as

#define for_each_ethrxq(sge, i) \
for (i = 0; i < (sge)->ethqsets; i++)

in the file drivers\net\ethernet\chelsio\cxgb4\cxgb4.h,

#define for_each_pci_dev(d) \
while ((d = pci_get_device(PCI_ANY_ID, \

PCI_ANY_ID, d)) != NULL)

in the file include\linux\pci.h,

#define shdma_for_each_chan(c, d, i) \
for (i = 0, c = (d)->schan[0]; \

i < (d)->dma_dev.chancnt; \
c = (d)->schan[++i])

in the file include\linux\shdma-base.h,

#define gmap_for_each_rmap(pos, head) \
for (pos = (head); pos; pos = pos->next)

in the file arch\s390\include\asm\gmap.h and

#define LOAD_FIXED_STATE(tbl,dev) \
for (i = 0; \

i < sizeof(tbl##Table##dev)/8; i++) \
chip->dev[tbl##Table##dev[i][0]] \

= tbl##Table##dev[i][1]

in the file drivers\video\fbdev\riva\riva hw.c. Their

names include information in not short names to make

them easier to understand in the big code. Compared to

them, we emphasize that proposed description method

such as in 2.1 is simple prefix style operator.

3　 Instruction of execution/non-execution of

code part such as operator

In trial and error or debugging during the program

development, some code parts may become necessary

or may become unnecessary. It may be common to do

them by commenting and uncommenting.

About this, examples of instructions such as opera-

tors are given in following 3.1 and 3.2.

3.1　 Instruction of execution/non-execution

for one statement

At first, we treat descriptions such as operators for

control of execution/non-execution of one statement.

It is often done to make comment such as

proc_a(1); /*proc_b(2);*/ proc_c(3);

with /* and */. On the other hand, if you prepare a

macro definition such as

#define D if(0)

by using “if” statement, you can write as follows†7 .

†6 The following examples are input without pares of a backslash and a line break in Ref. 7) and Ref. 8).
†7 There exists definitions of the same purpose using ternary operator in http://tricky-code.net/nicecode/code10.php (referred at 2018-
7-11) of tricky-code.net such as #define debug and #define debug 1 ? (void)0 :. However, ternary operator can be applied to
expressions in general, but it cannot be used for statements such as “for”, “while” and compound statements enclosed in { and },
causing errors.

－4－ 中村博文・渕田孝康 都城工業高等専門学校研究報告

proc_a(1); D proc_b(2); proc_c(3);

In this example, although the name of the macro is

assumed to be temporarily D, naming is actually arbi-

trary. During a program development, when the rever-

sal of execution and non-execution control is frequent,

the change with our method will be efficient because

characters to change are few. Although macro name

can be more than two characters, one character is op-

timal.

Compared with ordinary non-execution enclosed by

/* and */, macro D can non-execute one statement only

by inputting two characters such as a D and a space.

Furthermore, it is not necessary to move the input cur-

sor to the end point of the code portion must be non-

executed. If a compound statement enclosed by { and

} is targeted, you don’t need a space before {, so you

only need to enter one character D.

The effort of the undoing is also efficient, i.e. remove

a D and a space or remove only a D, than uncommenting

which removes /* and */.
In the C ++ code, // is convenient for comment-

ing up to the end of the line. However, if you want

to switch between executing and non-executing for one

statement in the middle of a line, not until the end of

the line, the macro such as above D is more convenient

also in the C++ code.

3.2　 Instruction of execution/non-execution

for multiple statements or multiple lines

If you want to apply a macro such as D to multiple

statements in one line or in multiple lines, you can do

it such as

D{
:
:

}

with D, { and }.
Inversions of executions and non-executions of the

code parts are possible by inputting or deleting the

character D. However, if you prepare by adding a macro

#define DD if(1)

or a macro

#define DD

whose macro expansion is an empty string, insert strings

in each place of the code are always one character, i.e.

D. If the inversions are frequent, this method is more

beneficial. It is arbitrary whether to prepare further-

more macro such as

#define DDD if(0)

with one more character.

To delete D s in the code may be one way for activat-

ing. However, the use of DD s has the advantage that

the signs that it is in the process of improvement of the

code do not disappear. The macro names are arbitrary,

such as D and E, X and EX†8 , D and ND, and modified

macro names with the purpose or group etc., instead of

D and DD.
When you want to activate all D s, of course, you have

the choice to modify the definition of D to

#define D if(1)

instead of deleting all D in the code. Otherwise, you

have the choice to modify the definition of D to

#define D

which is expanded to an empty string. These complete

only one portion change in entire the code.

In the above, D and DD work such as an operator

acting on the next lump.

†8 X is chosen by an association from no good of Japanese sense, EX is chosen by an association from execute.

第54号 Usages of Macro of C Programming Language such as Prefix Style Operator －5－

Since D and DD are actually realized by “if ” state-

ments, the effects of D and DD can be interrupted by

inserting ; immediately after them. That is, as an-

other way of activation, the instruction can be done by

inputting ; and making it as D;, instead of deleting D.
The notes on the way are described in 3.4.

On the controls of execution/non-execution of single

or multiple lines of a code, it is often surrounded by

#if line and #endif line. For example, debug related

code parts are surrounded such as follows.

#define DEBUG_SW_xxxxx 0

#if DEBUG_SW_xxxxx
:
:

#endif

On the other hand, it is conceivable to prepare a

macro such as

#define DEBUG_xxxxx if(0)

or

#define DEBUG_xxxxx if(1)

and to rewrite with { and } as follows.

DEBUG_xxxxx {
:
:

}

In this example, DEBUG xxxxx is used as the macro

name. DEBUG xxxxx can be regarded as an operator

that determines execution/non-execution of the debug

related code parts.

For non-execution of unused code parts or checking

code parts, commenting or surrounding with #if 0 and

#endif are often done. However, these may cause the

following disadvantages. If there are changes in the

data structures etc., some reflections may be forgotten

in the commented parts. And when you want to exe-

cute them suddenly at a later date, after the compiling

errors occured after the uncommenting or replacement

of #if 0 to #if 1, you can notice for the first time that

they have not been reflected. To make corrections af-

ter a long time will increase the time to remember and

confirm.

However, if they had not been commented, they

could be noticed and started correspondence with other

related parts at the time of the first compilation with

errors after changing the data structures etc. if not

sooner. Even if execution is not done, but the compila-

tion check is done, you will increase the possibility that

you will notice the inconsistency as soon as possible.

The use of macros is also beneficial in this point.

3.3　 Existing similar examples

There exists similar purpose code parts in Linux

code8) such as

#ifdef CONFIG_NET_CLS_ACT
#define tcf_exts_for_each_action(i, a, \

exts) \
for (i = 0; \

i < TCA_ACT_MAX_PRIO && ((a) \
= (exts)->actions[i]); i++)

#else
#define tcf_exts_for_each_action(i, a, \

exts) \
for (; 0; (void)(i), (void)(a), \

(void)(exts))
#endif

in the file include\net\pkt cls.h,

/* #define apic_debug(fmt,arg...)
printk(KERN_WARNING fmt,##arg) */

#define apic_debug(fmt, arg...) \
do {} while (0)

in the file arch\x86\kvm\lapic.c,

#ifdef MMU_DEBUG
:
#define pgprintk(x...) \

do { if (dbg) printk(x); } while (0)

－6－ 中村博文・渕田孝康 都城工業高等専門学校研究報告

#define rmap_printk(x...) \
do { if (dbg) printk(x); } while (0)

#define MMU_WARN_ON(x) WARN_ON(x)
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
#define MMU_WARN_ON(x) do { } while (0)
#endif

in the file arch\x86\kvm\mmu.c,

#ifndef CONFIG_LDM_DEBUG
#define ldm_debug(...) do {} while (0)
#else
#define ldm_debug(f, a...) \

_ldm_printk (KERN_DEBUG, __func__, \
f, ##a)

#endif

in the file block\partitions\ldm.c,

#if defined(QL_DEBUG)
#define DEBUG(x) do {x;} while (0);
#else
#define DEBUG(x) do {} while (0);
#endif

in the file drivers\scsi\qla4xxx\ql4 dbg.h,

#ifdef DEBUG
#define pr_debug(format, ...) \

fprintf(stderr, format, ## __VA_ARGS__)
#else
#define pr_debug(format, ...) \

do {} while (0)
#endif

in the file tools\virtio\virtio-trace\trace-agent.h,

#ifdef CONFIG_MEMCG_KMEM
:
#define for_each_memcg_cache_index(_idx) \

for ((_idx) = 0; \
(_idx) < memcg_nr_cache_ids; \
(_idx)++)

:
#else
:

#define for_each_memcg_cache_index(_idx) \
for (; NULL;)

:
#endif /* CONFIG_MEMCG_KMEM */

in the file include\linux\memcontrol.h,

#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...) do { } while (0)
#endif

in the file arch\arm\plat-iop\pci.c,

#ifdef DEBUG
#define ASSERT(x) \
do { \

if (!(x)) { \
printk(KERN_EMERG "assertion failed \

%s: %d: %s\n", \
__FILE__, __LINE__, #x); \
BUG(); \

} \
} while (0)
#else
#define ASSERT(x) do { } while (0)
#endif

in the file arch\x86\kvm\ioapic.h. These macros are

not prefix style and the arguments of them will not be

checked at the compilation on a selection of their defi-

nitions.

The macros defined at the code part

#ifdef DEBUG
#define dprintf printf
#else
#define dprintf(...) do { } while (0)
#endif

in the file tools\power\cpupower\bench\config.h can be

used only for output.

The macros definition at the code part

#ifdef NDEBUG
#define BUG_ON(cond) \

do { if (cond) {} } while (0)

第54号 Usages of Macro of C Programming Language such as Prefix Style Operator －7－

#else
#define BUG_ON(cond) assert(!(cond))
#endif

in the file tools\include\linux\kernel.h and

#ifdef VERBOSE_DEBUG
#define COH_DBG(x) ({ if (1) x; 0; })
#else
#define COH_DBG(x) ({ if (0) x; 0; })
#endif

in the file drivers\dma\coh901318.c are not prefix style.

The macros definition at the code part

static inline void activate_mm(\
struct mm_struct *active_mm,
struct mm_struct *mm)

{
get_mmu_context(mm);
set_context(mm->context, mm->pgd);

}

in the file arch\m68k\include\asm\mmu context.h and

#define deactivate_mm(tsk, mm) \
do { } while (0)

#define activate_mm(prev, next) \
switch_mm(prev, next, NULL)

in the file arch\unicore32\include\asm\mmu context.h

need keyboard operations at all place the macro used

when switching because they have different names for

execution and non-execution.

3.4　 Points to be noted

When macros such as D, DD and DEBUG xxxxx are

used, they may change the scope of control of “if ” syn-

tax and “else” syntax. Even if the macro name does not

include the string if, do not forget that “if ” statement

is used for realization.

And, if macros such as D, DD and DEBUG xxxxx are

under control of the preceding control syntax, for ex-

ample “for”, “while”, “if ” and “else” statements, you

should not block their effects by inserting ;.
When macros such as D and DD for execution/non-

execution control remain in the code after trial and er-

ror or debugging, it should be noted that the code is

not usually said to be a “beautiful code.”

In scenes where you want to make executable pro-

grams smaller, such as in product versions, keep in mind

whether the suppression of compiler’s dead code gener-

ation for if(0) is default or explicit setting.

4　Conclusions

We proposed that (1): iteration instructions and (2):

code part’s execution/non-execution instructions can

be described as prefix style operators using the macro

of C programming language and C++ programming

language.

(1) leads to describing concise and easy-to-

understand code by appropriately naming macros. (2)

leads to reductions in keyboard operations related to

trial and error. Furthermore, unlike commenting, since

the compilation check is also done on non-executing

parts on (2), there is a possibility to notice early that

the non-executable part needs to be modified.

Although these are effective methods, applicable

scenes do not always exist, and they are hard to be

used when they do not match the choosy, the customs

or the styles of individual program creators.

This paper is based on the conference presentation at

the 81st National Convention of Information Processing

Society of Japan9).

References

1) Kernighan, B.W. and Ritchie, D.M., Translated by

Ishida, H.: プログラミング言語C (original title is

“The C Programming Language”), Kyoritsu Shup-

pan(1989), (in Japanese).

2) Stroustrup, B., Translated by Nagao, T.: プログラ

ミング言語 C++(original title is “The C++ Pro-

gramming Language”), ASCII(1998), (in Japanese).

3) Tokawa, H.: ザ・C(meaning “the C”) 2nd edition 9th

impression, SAIENSU-SHA(2004), (in Japanese).

4) Mukuda, M.: はじめての C (meaning “C for the

first time”) 4th edition, 7th impression, Gijutsu-

Hyohron(2005), (in Japanese).

5) Kernighan, B., Bentley, J. and Matsumoto, H.,

Translated by Kuno, Yo. and Kuno, Ya.: ビュー

ティフルコード (original title is “Beautiful Code”)

1st edition, 3rd impression, O’Reilly Japan(2008),

(in Japanese).

6) Noro, H., Matsumoto, N.: Linear Algebra by C

－8－ 中村博文・渕田孝康 都城工業高等専門学校研究報告

Language(Japanese title is “C 言語による線形

計算”) (1), Implementation of MATRIX Data

Type and Fundamental Matrix Manipulation Func-

tions(Japanese subtitle is “行列のためのデータ型

の実現と基本的な行列操作関数”), Geoinformat-

ics, Vol.3, No.4, pp.211–217(1992), (in Japanese).

7) Hayashi, H.: C プリプロセッサ・パワー (mean-

ing “C preprocessor power”) 4th impression, Soft-

Bank(1989), (in Japanese).

8) The Linux Kernel Organization: linux-5.2.11, The

Linux Kernel Archives, https://www.kernel.org/

(referenced at 2019-8-29).

9) 中村博文, 渕田孝康: C言語マクロを前置型の作

用素のように使うことについて (meaning “Us-

age of the Programming Language C’s Macro such

as Prefix Operator”), 情報処理学会第 81 回全国

大会 (The 81st National Convention of Information

Processing Society of Japan), 2B-06, pp.1-161 – 1-

162 (March 2019), (in Japanese).

第54号 Usages of Macro of C Programming Language such as Prefix Style Operator －9－

