
Data Compression by Replacement of Symbol Pairs and Its Implementation

Hirofumi NAKAMURA1

(Accepted October 2, 2017)

Abstract For lossless data compression, an off-line encoding method which has analysis and cutting of

input symbol string is proposed. The analysis is based on replacement of frequent symbol pairs appearing

repeatedly. By the operation, the encoder does not cut in the symbol string which emerges more frequently

in the input symbol string. The encode does not send dictionary data to the encoder directly, but send

information for construction of dictionary to the encoder. Its decoding can be done fast with one-path

method without deep analysis of its input. A set of efficient data structures for the encoding and the

decoding such as hash table, frequency table, and bidirectional list is used. Theoritical proof that the

encoding and the decoding can be executed in time O(N) is proved, where N is the size of input data and

O(・) is Bachmann-Landau Big O notation.

Keywords [Data compression, Most frequent symbol pair, Replacement, Concatenation, Digram]

1　 Introduction

A data compression method based on cutting of

input symbol string was proposed by Ziv and Lem-

pel (LZ781)) and many of its revised methods(LZW2),

compress3) and so on4, 5, 6)) are proposed and widely

used.

The gzip(using another method proposed by Ziv and

Lempel(LZ777)) and Huffman Coding) is also widely

used.

There are methods which do generation process of

output by one input symbol: comp-28)(using Markov

model and Arithmetic Coding) and Block-sorting

method9)(using run-through information of sorted data

of all rotated whole data, Move To Front method and

Huffman Coding).

Off-line methods based on replacement of symbol

pairs which emerge repeatedly in input data are pro-

posed by Nakamura and Murashima10, 11, 12), by Nevill-

Manning et al.13, 14, 15)(named SEQUITUR14, 15)) and

by Gage16, 17) independently. Furthermore, an adap-

tive method is proposed by Nagayama et al.18).

LZ78 and its revised encoders have the following re-

dundancies:

(1) even if a certain symbol string appears repeatedly,

each appearance is cut in various positions and

(2) when input size N is finite, many enrolled symbol

strings are not used later.

They are improved as follows10, 11, 12):

(M1) encoder divides symbol strings between the sym-

bols which contact with lower frequency and

(M2) encoder does not enroll unnecessary symbol

strings by watching whole of input string.

The methods by Gage and the ones by us do similar

analysis for input data in the point of that replacement

is done for the most frequent symbol pairs. But how to

stop the analysis and how to cut strings are different

between the both methods.

This paper presents development of past

reports10, 11, 12). And, in this paper, implementation

of the proposed method improving the computing time

and the compression ratio is explained. Furthermore

the time complexity of proposed method is also men-

tioned.

2　 Encoding

Following terms are used in this paper. Symbol pair

1General Education Division, National Institute of Technology, Miyakonojo College

第 52 号 Data Compression by Replacement of Symbol Pairs and Its Implementation －1－

means a pair of two symbols. Symbol pair i j is ex-

pressed as i j merely. S is the symbol string under

analysis. The count of a symbol pair in S is expressed

as the number of appearance. The greatest number of

appearance of current S is expressed as Nmax(S). The

most frequent symbol pair is expressed as Pmax(S).

Here, Pmax(S) is a symbol pair whose number of ap-

pearance is Nmax(S). If the candidates of the most

frequent symbol pair exist more than or equal to twice,

one appropriate pair is chosen as Pmax(S).

In order to describe the processes of replacement

of symbol strings in this paper, production rules like

Nevill-Manning et al.13) are mainly used instead of tree

structures10, 11). Alphabet(code of input) corresponds

to terminal symbol of production rule. The symbol

pair corresponds to the digram of the paper of Nevill-

Manning et al.13) Code table is equivalent to collection

of production rules and alphabets.

Proposed encoder consists of analysis, cutting and

bit stream generation.

2.1　Analysis of Input Symbol String

In this subsection, the replacement of analysis is de-

scribed. The termination of the iteration is described

in subsection 2.4.

While the same symbol pair exists at least twice in

S, encoder can repeat following two operations:

(A1) Encoder finds Pmax(S).

(A2) Encoder replaces all Pmax(S) in S with a new

single symbol.

The new symbol is expressed as enrolled symbol. En-

coder treats it as a new symbol. Enrolled symbol is

equivalent to non-terminal symbol of production rule.

For example, the input data

S::= a c a b b a d c a d d b a a d d c a a d d b

consist of alphabet {a,b,c,d} is considered. On current

S, the number of appearance of symbol pair a d is the

greatest number 4 (=Nmax(S)). At first, it is consid-

ered that a d is equivalent to a new symbol A. Encoder

replaces all a d (=Pmax(S)) in S with A. Then

S::= a c a b b A c A d b a A d c a A d b ,

A::= a d

are given.

Next, current Pmax(S)=A d is replaced with new

symbol B. Then

S::= a c a b b A c B b a B c a B b ,

A::= a d , B::= A d

are given.

a c a b b a d c a d d b a a d d c a a d d b
∨ ∨ ∨ ∨ ∨ ∨

C A A A C A
∨ ∨ ∨

B B B
∨ ∨

D D
(a) Construction of Analyzed Result

a c a b b a d c a d d b a a d d c a a d d b
1 1
∨ ∨ ∨ ∨ ∨ ∨

2 2 2 2 2 2
∨ ∨ ∨

2 2 2
∨ ∨

2 2
(b) Analyzed Result with Enrollment Direction

a c a b b a d c d b a
1 1 1 1 1 1 1 1 1 1 1
∨ ∨ A C
2(C) 2(A) 1 1

∨ B
2(B) 1
∨ D
2(D) 1

(c) Before Re-enrollment

　 {a,b,c,d,z, C ,A ,B ,D }
→ {a,b,c,d,z, A’,B’,C’,D’}

a c a b b a d c d b a
1 1 1 1 1 1 1 1 1 1 1
∨ ∨ B’ A’
2(A’) 2(B’) 1 1

∨ C’
2(C’) 1
∨ D’
2(D’) 1

(d) After Re-enrollment

1 a 2 1 c 1 a 1 b 1 b 2 1 a 1 d 1 c
2 2 1 B’ 1 d 1 b 1 a 1 C’ 1 A’ 1 D’ z

or
1 211 1 1 211 1 22111 1 1 1 1 1
a ca b b ad c B’db a C’A’D’ z

(e) Output

Fig.1 Example of Cutting from Analyzed Result

－2－ 中村博文 都城工業高等専門学校研究報告

Next, current Nmax(S) is 2. The number of appear-

ance of c a and B b is 2. It is assumed that c a is

selected from these as Pmax(S). Encoder replaces c a

with new symbol C. Then

S::= a C b b A c B b a B C B b ,

A::= a d , B::= A d , C::= c a

are given.

Next, current Pmax(S)=B b is replaced with D. Af-

ter that, encoder can not continue replacement because

Nmax(S)＜ 2. As the result, encoder obtains

S::= a C b b A c D a B C D ,

A::= a d , B::= A d , C::= c a , D::= B b .

Proposed method catches the most frequent symbol

string “add”(see also Fig. 1(a)).

If replacement is done while Nmax(S)≧ 2, there are

cases that enrollment is excessive. Proposed method

uses a revised judgment of termination of analysis

based on rough estimation of output length. The judg-

ment(call it RepeatCheck) is described in subsec-

tion 2.4.

2.2　Cutting of Input Symbol String

2.2.1　 Enrollment direction

It is possible to do self-referencing cutting, and to

send only directions of enrollment instead of code ta-

ble.

It is assumed that analyzed result consists of tree

structures and symbols like Fig. 1(b), where 1 means

leaf, and 2 means parent node of the two children. This

information(1 and 2) of tree structure is expressed as

enrollment direction. If these are transferred to decoder

using prefix notation with symbols, then decoder will

accept them from left like this: 1a, 2 1c 1a, 1b, 1b, 2

1a 1d, 1c, 222 1a 1d 1d 1b, ... and so on.

It is assumed that decoder enrolls symbol pair as a

new symbol when symbol 2 is accepted, then other same

sub-trees can be expressed by one leaf. But decoder ac-

cepts these from left. So, encoder must do re-numbering

of enrolled symbols. The re-numbering is expressed

as re-enrollment. And the re-numbered symbol is ex-

pressed as outside symbol. Outside symbols is expressed

with prime. C,A,B,D are re-numbered like A’,B’,C’,D’.

Proposed method avoids division strings appearing

more frequently, excepting for the first appearance for

enrollment. In the former example, output becomes

like Fig. 1(e), where z is a terminal symbol that is in-

troduced to indicate the end of sequence.

2.2.2　Cutting based on Multi-branch Tree

It is assumed that another example given by

S1::= a b c d e b c d f b c d e b c d f g

which is the input string treated in the paper13) of

Nevill-Manning et al. Its analyzed result becomes as

follows:

S1::= a E E g ,

A::= b c, B::= A d, C::= B e, D::= C B, E::=D f .

But there are symbols used for symbol definition only.

Symbols A, C and D do not appear in the output

1a 2 2 2 2 2 1b 1c 1d 1e 2 1B 1f 1E 1g 1z.

It is possible to express analyzed result like follows:

1a 4 3 1b 1c 1d 1e 1A’ 1f 1B’ 1g 1z

by using 1,2,3,4,…,Bmax as enrollment direction,

where Bmax is a constant value. Symbols at most

Bmax can be enrolled to a new enrolled symbol direc-

tory, and unused symbols are not necessary as outside

symbol. Its decoder can reconstruct code table as fol-

lows:

A’::= b c d , B’::= A’ e A’ f .

Even if decoder’s code table is also based on binary

tree(like T in Fig. 3 mentioned later), decoder can re-

construct production rules

A::=bc, B::=Ad, C::=Be, D::=CB, E::=Df,

where A,B,C,D and E are enrolled symbols to refer sym-

bol pairs in the code table. Decoder needs another

table(V in Fig. 2 shown later) which contains

A’::=B , B’::= E

for conversion from outside symbol to enrolled symbol.

Production rules of encoder side and decoder side are

a little bit different. But original input string can be

uniquely reconstructed, because produced symbols of

outside symbols are the same in both sides.

2.3　Bit Stream Generation

Proposed method uses adaptive arithmetic

coding6, 19) for bit stream generation. Values of fre-

quency and accumulation are memorized in a complete

binary tree6). A frequency value is memorized on a

leaf. Each node except leaves memorizes the sum of its

children’s values. Accumulation value is provided by

adding each left brother’s value on a course following

from a leaf to the root(if left brother does not exist, no

value is added).

Two trees are prepared. One for enrollment direction

and the other for outside symbol. We unified output by

doing numeration using common variable to affect out-

put for both data.

第 52 号 Data Compression by Replacement of Symbol Pairs and Its Implementation －3－

2.4　 Termination of Replacement in Analysis

RepeatCheck decides its return value as follows:

RepeatCheck ≡

Nmax(S) ≧ 2 and

roughoutputlength(|S|, C0, C) ＞

roughoutputlength(|S| −Nmax(S) + 1, C0, C + 1) ,

where |S| is the count of elements in current S,

C0 = ⟨alphabet size⟩ + ⟨1 (for z)⟩
= K + 1,

roughoutputlength(r, c0, c)

≈
∑

⟨symbol output⟩

log

⟨
size of code table

on each output

⟩

+

⟨
roughly estimated output size

of enrollment directions

⟩
≈ (r + c− c0 + 1) × average(c0, c)

+ (r + c− c0 + 1) × 1,

the base of log is 2 and

average(l, h) =

h∑
c=l

log c

h− l + 1
.

By Stirling’s approximation,

average(l, h)

≈
(
h+

1

2

)
log h−

(
l − 1

2

)
log(l−1)−(h−l+1) log e.

It is assumed that the length of one symbol is logC

bits when size of current code table is C and the length

of one enrollment directions is 1 bit. And it is assumed

that average length of one output is roughly equal to

average(l, h), where the initial size of code table is l and

last size is h. Appearance probability is disregarded.

For shortening of processing time, estimation is used

only when Nmax(S) changes.

3　Decoding

At the decoding side, according to enrollment direc-

tion, decoder can reproduce code table of outside sym-

bol, and can reconstruct original symbol string.

4　Algorithm

Fundamental algorithms of encoding and decoding

are shown in Fig. 2 in Pascal-like language. Meanings

of major symbols are shown as follows.

K: Size of alphabet. A symbol whose ordinal number

is K is used to indicate the end of sequence. K is 256

for byte data.

RepeatCheck: Judgment of termination of analysis.

Procedure ReferenceCount(ci);
if ci ≦ K then ｛no operation｝
else if OutsideSymbol(ci) ＝ nil then

ReferenceCount(Left(ci)); ReferenceCount(Right(ci));
Reenroll(T,ci,-1); Tb[ci]:=1;

else
Tb[ci]:=Tb[ci]+1;

endif;
endproc;
function SetOutsideSymbol(ci);

if ci ≦ K then return(1);
else

bl:=SetOutsideSymbol(Left(ci));
br:=SetOutsideSymbol(Right(ci));
if bl+br ＞ Bmax and bl ＞ 1 then

Cout:=Cout+1; Reenroll(T,Left(ci),Cout);
Tb[Left(ci)]:=bl; bl:=1;

endif;
if bl+br ＞ Bmax and br ＞ 1 then

Cout:=Cout+1; Reenroll(T,Right(ci),Cout);
Tb[Right(ci)]:=br; br:=1;

endif;
if OutsideSymbol(ci) ＝-1 and Tb[ci] ≧ 2

or bl+br ＝ Bmax then
Cout:=Cout+1; Reenroll(T,ci,Cout);
Tb[ci]:=bl+br; bl:=1; br:=0;

endif;
return(bl+br);

endif;
endfunc;
procedure Write(ci);

if ci ≦ K then
WriteDirection(1); WriteSymbol(ci);

else if OutsideSymbil(ci) ＝-1 then
Write(Left(ci)); Write(Right(ci));

else if OutsideSymbil(ci) ≠ -1 and Tb[ci] ≧ 2 then
WriteDirection(Tb[ci]);
Write(Left(ci)); Write(Right(ci)); Tb[ci]:=1;

else ｛OutsideSymbil(ci) ≠ -1 and Tb[ci] ＜ 2｝
WriteDirection(1); WriteSymbol(OutsideSymbol(ci));

endif;
endproc;
procedure Encode;

Readfile(S); Initialize; Cin:=K; Cout:=K;
while RepeatCheck do begin

cl cr:=Pmax(S); Cin:=Cin+1;
Enroll(T,cl,cr,Cin); Replace(S,cl,cr,Cin);

end;
for ci:=each element of S do ReferenceCount(ci);
for ci:=each element of S do w:=SetOutsideSymbol(ci);
for ci:=each element of S do Write(ci); Write(K);

endproc;

(a) Encoding algorithm

procedure WriteString(ci);
if ci ＜ K then WriteAlphabet(ci);
else if ci ＞ K then

WriteString(Left(ci)); WriteString(Right(ci));
endif;

endproc;
function Read;

t:=ReadDirection;
if t ＝ 1 then

ci:=ReadSymbol; if ci ＞ K then ci:=V[ci];
WriteString(ci); return(ci);

else
cl:=Read;
for i:= 2 to t do begin

cr:=Read; Cin:=Cin+1; Enroll(T,cl,cr,Cin); cl:=Cin;
end;
Cout:=Cout+1; V[Cout]:=Cin; return(Cin);

endif;
endfunc;
procedure Decode;

Initialize; Cin:=K; Cout:=K;
while Read ≠ K do ｛no operation｝;

endproc;

(b) Decoding algorithm

Fig. 2 Fundamental algorithms of encoder and decoder

Enroll(T ,cl,cr,ci): Enroll cl cr to code table T as en-

rolled symbol ci.

Replace(S,cl,cr,ci): Replace every cl cr in S with sym-

bol ci.

WriteDirection(c): Output enrollment direction c.

－4－ 中村博文 都城工業高等専門学校研究報告

WriteSymbol(c) : Output outside symbol c.

OutsideSymbol(c): Return outside symbol assigned

for enrolled symbol c.

Left(c), Right(c): Return left and right side of symbol

pair that enrolled as enrolled symbol c.

Reenroll(T ,ci,co): Assign co(outside symbol) to

ci(enrolled symbol).

ReadDirection: Input enrollment direction.

ReadSymbol: Input outside symbol.

5　 Implementation and Time Complexity

5.1　Data Structures

5.1.1　Outline of Data Structures

Compression time mainly depends on finding Pmax(S)

and replacement. The points of data structures are

(D1) how to get the most frequent symbol pair in S from

a number of appearance(in Fig. 3, F →H → S) and

(D2) how to get the number of appearance from a

symbol pair(H → F). There are many symbol pairs

whose number of appearance are the same, so links are

used(Ffd, Ffu,Hfd,Hfu). There are many positions

where the same symbol pairs are contained in, so links

are used(Hpd,Hpu, Spd, Spu).

5.1.2　Details of Data Structures

The relations of data structures are shown in Fig. 3. In

the figure, an input string

c a d d b a a d d c a a d d b

consisting of alphabet a,b,c,d and hash function

f(i, j) = (i × 7 + j × 3) mod 16 for symbol pair i j

are used, where mod gives remainder of division. After

input of data, initialization of data structures, enroll-

ment of first Pmax(S) = a d to the code table T and

replacements of Pmax(S) = a d in S, contents become

as Fig. 3. Last valid values are remained in parentheses.

Two-way lists(headers are Ffd and Ffu of array

F whose index is the number of appearance) are pre-

pared to find one Pmax(S) in time O(1), where O(・)

is Bachmann-Landau Big O notation. Fpos is set to

last Nmax(S), so encoder can use first element of list

F [Fpos] as Pmax(S) in most case. Each two-way list

links hash table’s buckets whose data in Hv are the

same. These lists link symbol pairs(impremented by Hl

andHr of hash tableH) for each number of appearance.

And two-way lists(headers are Hpd and Hpu of H)

are prepared to know each position of Pmax(S) in S

for replacement in time O(1). These lists link symbol

pairs’ all locations in S for each symbol pair.

And hashing are used to memorize the number of

appearance. The numbers of appearances of all symbol

pairs are memorized and updated instead of counting

whenever encoder finds Pmax(S). By using hashing,

one updating operation of the number of appearance

can be done in time O(1). It is efficient for decreasing

necessary memory to use hashing instead of two dimen-

sional array indexed by two symbols.

ＨvＨl
0
1
2
3

-1

Ｈ Ｈr

10
11
12
13
14
15

4
5
6
7
8
9

9
10
11

Ｓ
1
2
3
4
5

a a (2) 0
a A 2

 a:0
 b:1
 c:2
 d:3
 z:4=K
 A:5

12
13
14
15
16

Ｔ

6
7
8

-1

:
Fmax

 Ｆ

Ｆpos→3

: :
nil nil
Ｆfd Ｆfu

nil nil

2

4

Ｈpd Ｈpu Ｈfd Ｈfu

1

-1
-1

b a 1
-1

c a (2) 1
d d (3) 0

A d 3
c A 1

-1
d c 1

(a) (d) (3)-1
d b 2

Ｓs Ｓd Ｓu Ｓpd Ｓpu
c

(a)A
(d)

d
b
a

(a)A
(d)

d
c
a

(a)A
(d)

Ｔl Ｔr Ｔout

d
b

b nil nil
c nil nil

Ｔb
a nil nil

←Ｃin=5a d nil

d nil nil
nil nil nil

Fig.3 Outline of Data structures

Hash’s buckets keep the number of appearances of

symbol pairs in field Hv when Hv > 0. Hv = −1

means the bucket is free. All buckets’ Hv are −1 when

initialization is done. Hv = 0 means the bucket does

not memorize symbol pair but encoder must search fol-

lowed buckets when hashing is not hit.

Fmax is the size of F . Fmax can be decreased

to ⌈
√
N⌉, where ⌈x⌉ expresses ceiling of x. The el-

ement F [Fmax](means Ffd[Fmax] and Ffu[Fmax])

links Buckets so that Hv ≧ Fmax. In the severe case,

第 52 号 Data Compression by Replacement of Symbol Pairs and Its Implementation －5－

F [Fmax] links at most ⌈N/Fmax⌉ ≦ ⌈
√
N⌉ buckets.

Then to find Pmax(S) for replacement on analysis, en-

coder searches this link at most ⌈
√
N⌉ times by linear

search in time O(
√
N), because of that F [Fmax] links

buckets whose Hv is not smaller than Fmax. Total

time complexity of finding Pmax(S) does not exceed

O(
√
N) × O(

√
N) = O(N).

The number of symbol pairs does not exceed both N

and |S|2. So the number of necessary buckets of hash-

ing does not exceed both of them. Before the iteration

of replacing, the number of necessary buckets does not

exceed K2. It is assumed that encoder does nullify of

buckets whose Hv is 1 before iteration of replacing. Af-

ter that minimum value of valid Hv becomes 2. Then

the number of necessary buckets of hashing does not

exceed N/2. For good management of hashing, hash

space is increased at least about 20%. I choose

Hmax =


1.2N (N ≦ K2)

1.2K2 (K2 < N ≦ 2K2).

0.6N (others)

Here, Hmax is O(N).

5.2　 Time Complexity

R denotes the number of elements in analyzed re-

sult S. C denotes the size of code table consisting of

alphabet, z and all enrolled symbols.

5.2.1 　 Time Complexity of Input and Initial-

ization

In Fig. 3, T l[i], T r[i] and Tout[i](i = 0～K − 1) are

filled to make it understandable. But there is no need

to use them, because T l[i] is always i(i = 0～K − 1).

Initialization of T can be done in O(1).

Data input is done in time O(N).

To set Sd[m]←m+ 1(m = 1～N − 1) and Su[m]←

m − 1(m = 2～N) are done in time O(N). To set

Hv[h]← −1(h = 0～Hmax− 1) is done in time O(N),

because Hmax = O(N). To update

Hv[f ′(Ss[m], Ss[m+ 1])]

←

{
1 (first time)

Hv[f ′(Ss[m], Ss[m+ 1])] + 1 (others)

with filling Hl,Hr and linking Ss[m] to two-way

list(the headers are Hpd and Hpu and the bodies are

Spd and Spu) is done for m = 1～N − 1 in time O(N).

Here, the index of the bucket for symbol pair i j is ex-

pressed by f ′(i, j). To set Ffd[p]← nil and Ffu[p]←

nil(p = 1～⌈
√
N⌉) are done in time O(

√
N). To link

H[h] to Ffd[Hv[h]] and Ffu[Hv[h]](h = 0～Hmax−1)

is done in time O(N).

From these, data input and initialization can be done

in time O(N).

5.2.2　 Time Complexity of Analysis

At first, Fpos is set to ⌈
√
N⌉ and Cin(the value is

code table’s current size minus one) is set to K.

To find Pmax(S), encoder uses F . Encoder removes

Pmax(S) from F , nullifies Pmax(S) in H and en-

rolls Pmax(S) to code table T . These can be done

in time O(1). Total count of finding Pmax(S) and

that of enrollment are equal. They does not exceed

N . So time complexity of analysis does not exceed

O(N) × O(1) = O(N).

After that encoder finds all the place of Pmax(S)

in S by using Hpd and Spd, and changes Ss, Sd, Su.

Then encoder updates H: decreases Hv, increases Hv

and enters new symbol pairs to H if needed.

When a symbol pair i j in S::= ... u i j v ... is re-

placed with X, the numbers of appearance of u i, j v

and i j decreases, and the numbers of appearance of u

X and X v increases. Then symbols in S are moved

among the two-way lists constructed byHpd, Spd, Hpu

and Spu. And buckets of H are moved among the two-

way lists constructed by Ffd, Hfd, Ffu and Hfu.

One updating of the number of appearance is done

in time O(1), so replacement of one place is completed

in time O(1). The length of S decreases by 1 by the

replacement operation of one place in S, so the number

of replacement operations in S does not exceed N . On

these account, the time complexity of analysis does not

exceed O(N) × O(1) = O(N).

5.2.3　 Time Complexity of Cutting

The cutting is done by ReferenceCount and

SetOutsideSymbol in Fig. 2. The calling paths of

ReferenceCount and SetOutsideSymbol are the

same as depth-first search path of the trees of analyzed

result like Fig. 1(a).

The number of leaves of analyzed result is N . So the

time complexity of execution of ReferenceCount and

SetOutsideSymbol is O(N).

5.2.4　 Time Complexity of Bit Stream Gener-

ation

When the Arithmetic Coding with complete binary

tree is used on Write, process of the bit stream genera-

tion for one symbol can be calculated in O(logC). And

process of the bit stream generation for one enrollment

direction can be calculated in O(logBmax) = O(1).

Time necessary for the bit stream generation depends

on total process for symbols and enrollment directions.

－6－ 中村博文 都城工業高等専門学校研究報告

It is expressed as follows.

O(⟨Time necessary for Code Generation⟩)

= O(R+ C − C0 + 1) × O(logC)

+O(R+ C − C0 + 1) × O(1).
(1)

I do not know the order of Eq.(1) yet. But the order of

output length is also expressed as Eq.(1). If output of

coding does not expand in the extreme, order of output

length is the same as the size of input. So, time com-

plexity of bit stream generation is O(N).

5.2.5　 Time Complexity of Decoding

Decoder does not need to use F , H and S. Com-

plexity of its decoding mainly depends on the en-

rollment of symbol pairs and production of original

alphabet strings. The time complexity of the en-

rollment(updating of T) is O(1). Total time com-

plexity of the enrollment of decoder does not exceed

O(N) × O(1) = O(N). The paths of decoder’s pro-

ductions are similar to the depth-first search path of

trees of analyzed result like Fig. 1(a). The number of

leaves of the trees is N . So the time complexity of the

production of decoding is O(N).

6　Comparison with Similar Methods

The comparison data are shown in Table.1. In the

method of Nevill-Manning et al.13), S begins with null,

and input symbols are added to S symbol by symbol.

On each adding, encoder finds a symbol pair that ap-

pears twice in S and production rules in all. If such

a symbol pair exists, encoder makes a new production

rule, defines a new non-terminal symbol, and replaces

existed symbol pairs with the new non-terminal symbol.

This method does integration and abolition of produc-

tion rules if possible. For the example data S mentioned

in subsection 2.1, provided analyzed result is shown in

Fig. 4(a). This method can output after having ana-

lyzed whole input data.

Proposed method, method of Gage and method of

Nevill-Manning et al. sometimes give the equivalent

analyzed result. An example is S1::= a b c d e b c d f

b c d e b c d f g mentioned in subsection 2.2.2.

In the method of Nagayama et al.18), on each adding

of input symbol to S, encoder looks for a symbol pair

that appear twice in only S. If such a symbol pair exists,

encoder replaces the rear with a symbol whose ordinal

number corresponds to the location of the first appear-

ance in S. While there is a symbol pair which exists

twice in S, encoder repeats replacement. This method

does not send code table, and does not need to send any

direction for enrollment. This is an adaptive method.

Analyzed result by this method is shown Fig. 4(b). Nu-

merals(1 to 15) are used as non-terminal symbols here.

Table 1 Comparison data with similar methods
Nevill- Nagayama Gage Proposed

Manning

et al.14, 15) et al.
Initial of whole of whole of

S null null each input

input block

Addition symbol symbol

to S by by no no
symbol symbol

Finding most most

symbol twice twice frequent frequent

pair (Pmax(S)) (Pmax(S))

Find S and S S S
in code table

Replacing S and S
in code table except first S S

appearance

Rule yes no no no
reduction
Timing of while while after after
analysis inputting inputting inputting inputting

all all
Timing of after while after after
output analysis inputting analysis analysis

(not (adaptive) (not (not

adaptive) adaptive) adaptive)

Time com- O(N) O(N) not O(N)
plexity mentioned

Gage’s method and proposed method are both based

on replacement of the most frequent symbol pair.

Gage’s method divides input data into small blocks.

Analysis, cutting and generation are iterated block by

block. It uses only unused byte code words(less than

256 code words) in each block as enrolled symbols. And

it sends code table with only byte code words. So out-

put can be constituted with byte code words. These

save necessary memory and processing time16, 17). But

if size of input data block is very small or very big,

the compression ratio becomes bad. Because the num-

ber of enrollments becomes few when the block is very

small, and the number of enrollments does not exceed

256 even if the block is big.

The experimental result is shown in Table 2. The ex-

periment is done for 14 files of Calgary Text Compres-

sion Corpus6)(it is expressed as TCC) . On the experi-

ment, it is assumed that input alphabet is byte code(it

第 52 号 Data Compression by Replacement of Symbol Pairs and Its Implementation －7－

is expressed as character or as char). To divide input

data into small blocks is necessary for Gage’s method.

S::= a A b B d A C B D A D b

A::= c a , B::= b a , C::= d d , D::= a C .

a c a b b a d c a d d b a a d d c a a d d b
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
A B A C B C A C

∨ ∨

D D

(a)By the Method of Nevill-Manning et al.

S::= a c a b b a d 2 d d 5 6 7 6 d b

1::= a c , 2::= c a , 3::= a b , 4::= b b , 5::= b a ,

6::= a d , 7::= d 2 , 8::= 2 d , 9::= d d , ...

a c a b b a d c a d d b a a d d c a a d d b
V V V V V
2 5 6 2 6

V
7

V V V V V V V V V V V V V V V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b)By the Method of Nagayama et al.

Fig.4 Analyzed Results

Table 2 Compression performance of Gage’s method

for TCC
Block Compression

length ratio

[K Bytes] [bits/char]

1 4.956

4 4.144

16 4.099

64 4.370

256 4.751

1024 4.978

Proposed method uses the enrolled symbols whose or-

dinal numbers follow alphabet size K. Compression ra-

tios of similar methods are shown in Table 3. Bmax is

chosen to 12 which is the best value on TCC. Proposed

method is better than the methods of Nevill-Manning

et al., Nagayama et al. and Gage.

Table 3 Average compression ratios for TCC

Method Send Adaptive

dictionary

by Nevill-Manning et al.13) 3.1313) 2.7013)

SEQUITUR - 2.6414, 15)

by Nevill-Manning et al.14, 15)

by Nagayama et al.18) - 3.2918)

by Gage∗16, 17) 4.11 -

Block-sorting9) 2.4289) -

Proposed - 2.46
∗Program was prepared by us.

7 Comparison with LZ78 and LZW

Table 4 Comparison data with LZ78 and LZW
File LZ78 LZWProposed (Bmax = 2)
name Enroll. Comp. Enroll. Comp. Enroll. Num. of Comp.
　 [times] ratio [times] ratio [times] cutting ratio
and and and and [times]
size used [bits used [bits used [bits
[Bytes] ([%]) /char] ([%]) /char] ([%]) /char]
bib 21407 4.150 26860 3.346 5469 20630 2.461
111261 (45.6) (48.4) (80.5) (2.156)
book1 131007 4.094 154226 3.274 23586 151644 3.012
768771 (43.5) (43.5) (96.6) (2.630)
book2 102421 3.982 120683 3.148 21147 103591 2.550
610856 (47.0) (47.2) (90.4) (2.265)
geo 26211 5.588 42838 6.077 707 50463 5.344
102400 (19.5) (25.4) (94.5) (4.556)
news 73389 4.525 90904 3.757 20076 75582 2.988
377109 (42.9) (43.4) (72.4) (2.596)
obj1 5983 5.538 9067 5.229 1653 8108 4.356
21504 (32.2) (30.5) (78.3) (3.825)

obj2 50858 4.690 68090 4.170 14657 50147 2.885
246814 (45.1) (44.9) (70.2) (2.570)
paper1 12130 4.748 15369 3.775 3561 12347 2.900
53161 (45.1) (46.0) (79.6) (2.602)

paper2 17320 4.474 21331 3.520 4297 18400 2.860
82199 (44.8) (44.9) (89.6) (2.560)

pic 26576 1.131 35057 0.970 6009 36440 0.936
513216 (41.7) (40.3) (93.8) (0.801)
progc 9394 4.852 11978 3.868 2845 9375 2.901
39611 (44.9) (45.7) (75.9) (2.597)

progl 13543 3.957 16524 3.032 4187 11402 2.029
71646 (51.0) (51.2) (68.0) (1.818)

progp 9764 4.057 12016 3.113 3148 7677 1.919
49379 (50.6) (51.0) (60.7) (1.724)

trans 18125 4.123 22440 3.266 5915 12425 1.756
93695 (54.1) (55.0) (52.8) (1.554)

Comparison of data with LZ78 and LZW are shown

in Table 4. Each processing time[sec] of coding and de-

coding is a value measured on the workstation Fujitsu

S-4/20H. It is total time used by user and by system,

and it is an average value of 10 trials. Experiments are

done on the condition that code table’s indices are ex-

pressed in ⌈log c⌉ bits (where c is current size of code

table), additional characters are expressed in 8 bits

on LZ78 and enrollment directions are expressed in 1

bit(Bmax = 2) on proposed method. On LZ78 and

LZW, the number of enrollment is different from the

number of cutting at most one. Ratio of used symbol

strings(whose size is ≧ 2) are shown in parentheses. It

is calculated by

－8－ 中村博文 都城工業高等専門学校研究報告

⟨the number of used enrolled symbol strings⟩
⟨the number of enrollment after initialization⟩

.

Entropy is shown in parentheses. It is calculated from

symbols’ appearance probabilities in whole output. On

LZ78, it is the sum of entropy of the part of code table

index and the part of additional character. On pro-

posed method, it is the sum of entropy of the part of

enrolled symbol and the part of enrollment direction.

The number of cutting of proposed method is 69%～

193%(average is 109%) of LZ78, 55%～118%(average is

83%) of LZW. There are increased case and decreased

case. Compression ratio does not depend on the num-

ber of cutting and average length of cut symbol strings.

The number of enrollment becomes less than 1/3 of

both LZ78 and LZW. Ratio of used symbol strings be-

comes higher on proposed method, because the number

of enrollment decreases more than the decrease of cut-

ting number.

8　Other Experimental Results

Compression ratio and execution time of proposed

method are shown in Table 5. The execution time per

one character is approximately constant.

Table 5 Input data length and compression

performance

File Compression Encode Decode

length ratio time time

[Bytes] [bits/char] [μ sec/char] [μ sec/char]

215 2.325 14.62 2.38

216 2.261 15.05 2.01

217 2.229 14.24 2.05

218 2.218 15.35 2.17

219 2.188 15.12 2.12

220 2.160 14.85 2.07

K = 256, Entropy = 2.000

Proposed method replaces the most frequent symbol

pair in S first. In the present, this does not guaran-

tee the best results. I examined other two variations of

proposed method which select a symbol pair(instead of

Pmax(S)) independently of the number of appearance.

(a) A method uses the former symbol pair in stored or-

der in S and

(b) the other method uses the encountered symbol pair

while tracing hash space in stored order repeatedly.

These do not select symbol pair whose number of ap-

pearance is less than 2.

But the performances of these two methods for TCC

were approximately 14% and 28% worse than the pro-

posed method, respectively.

Compression ratios of some existing methods are

shown in Table 6. By the data of Burrows et al.9),

we can say its processing time is near to gzip’s.

Execution time of encoding of proposed method is

not short. But decoding time is short because its pro-

cess is similar to LZW except for treatment of enroll-

ment directions and use of Arithmetic coding.

Table 6 Compression performance for TCC

Method Average Total Total

comp. encode decode

ratio time time

[bits/char] [sec] [sec]

LZ781)∗ 4.279 7.6 4.3

by Gage16, 17) 4.110 67.9 2.2

compress3) 3.632 4.5 3.0

LZW2, 20) 3.610 8.6 4.5

gzip21) 2.708 15.3 2.9

comp-28)(with 3-th order) 2.540 83.9 88.5

comp-28)(with 4-th order) 2.467 121.3 125.9

comp-28)(with 5-th order) 2.502 103.5 107.4

Proposed 2.460 57.1 9.0
∗Program was prepared by us.

9　Conclusions

A data compression method based on replacement of

symbol pairs are described. Encoder reads whole input

data at first. It sends directions of enrollment instead

of code table. Processing time of encoding and decod-

ing are order of data size. Decoding can be done by one

pass process. Decoding is relatively fast compared to

the encoding.

Themes of my future study are theoretical analysis

of coding performance and application to image data

compression.

Acknowledgment

I express thanks to Prof. Sadayuki Murashima

(Kagoshima Univ.) for discussion, and to Prof. Hi-

rosuke Yamamoto (Tokyo Univ.), Mr. Mitsuharu Ari-

moto (Tokyo Univ. Doctor Course Student), Prof. Tsu-

tomu Kawabata (Univ. of Electro-Communications)

第 52 号 Data Compression by Replacement of Symbol Pairs and Its Implementation －9－

and Mr. Mitsugu Kurizono (Kagoshima Univ., at that

time avobe all) for offering useful information on this

study.

References

1) J. Ziv, and A. Lempel, “Compression of Individual
Sequences via Variable-rate Coding,” IEEE Trans
Inf. Theory, vol.24, no.5, pp.530–536, 1978.

2) T.A. Welch, “Technique for High-performance Data
Compression,” Computer, vol.17, no.6, pp.8–19,
1984.

3) P. Jannesen, D. Mack, J. Orost, J.A. Woods, K.
Turkowski, S. Davies, J. McKie, and S.W. Thomas,
Compress Version 4.2.3, Anonymous ftp from gate-
keeper. dec.com: /pub/misc/ ncompress-4.2.3 .

4) H. Yokoo, “An Ziv-Lempel coding Scheme for Uni-
versal Source Coding,” IEICE Trans. Fundamentals,
J68-A, no.7, pp.644–671, July 1985, in Japanese.

5) H. Yamamoto, and K. Nakata, “On the Improve-
ment of Ziv-Lempel code and its Evaluation by
Simulation-[II],” IEICE Tech. Report, CS84-135,
pp.1–8, Jan. 1985, in Japanese.

6) T.C. Bell, J.G. Cleary, and I.H. Witten, “Text Com-
pression,” Prentice-Hall, New Jersey, 1990.

7) J. Ziv, and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Trans. Inf.
Theory, vol.23, no.3, pp.337–343, 1977.

8) M. Nelson, “Arithmetic coding and statis-
tical modeling,” Dr. Dobbs Journal, Feb.
1991, Anonymous ftp from ftp.web.ad.jp:
/pub/mirrors/Coast/msdos/ddjmag/ ddj9102.zip .

9) M. Burrows, and D.J. Wheeler, “A Block-sorting
Lossless Data Compression Algorithm,” System Re-
search Center Research Report, 124, May 1994.

10) H. Nakamura, and S. Murashima, “The Data Com-
pression based on Concatenation of Frequent Code
neighbor,” Proc. 14-th Sympo. on Inf. Theory and
Its Appl., pp.701–704, Dec. 1991, in Japanese.

11) H. Nakamura, and S. Murashima, “The Data
Compression based on Concatenation of Neighbor-
ing Characters Which Emerge Repeatedly,” IE-
ICE Trans. Fundamentals, vol.J79-A, no.7, pp.1319-
1323, July 1996, in Japanese

12) H. Nakamura, and S. Murashima, “Data Com-
pression by Concatenations of Symbol Pairs,” Proc.
IEEE Intr. Sympo. on Inf. Theory. and Its Appl.,
pp.496–499, Sept. 1996.

13) C.G. Nevill-Manning, I.H. Witten, and D.L.
Maulsby, “Compression by Induction of Hierarchical
Grammars,” Proc. Data Comp. Conf., pp.244–253,
1994.

14) C.G. Nevill-Manning, and I.H. Witten, “Detect-
ing sequential structure,” Proc. Programming by

Demonstration Workshop, Machine Learning Conf.,
pp.49–56, 1995.

15) C.G. Nevill-Manning, and I.H. Witten, “Com-
pression and explanation using hierarchical gram-
mars,” Computer Journal, Vol.40, No.2/3, pp.103–
116, 1997.

16) P. Gage, “A New Algorithm for Data Compres-
sion,” The C Users Journal, vol.12, no.2, pp.23–38,
Feb. 1994.

17) P. Gage, translated by A. Kida, “A New Algo-
rithm for Data Compression,” C Magazine, vol.7,
no.1, pp.21–27, Jan. 1995.

18) Y. Nagayama, S. Ito, and T. Hashimoto, “A Loss-
less Data Compression Algorithm Based on Di-
gram,” Proc. 18-th Sympo. on Inf. Theory and Its
Appl., pp.573–576, Oct. 1995, in Japanese.

19) I.H. Witten, R.M. Neal, and J.G. Cleary, “Arith-
metic coding for data compression,” Commun.
ACM, Vol.30, No.6, pp.520–540, June 1987.

20) X1 Player’s Zun, “Data Compression Program us-
ing Lempel-Ziv method,” I/O, vol.13, no.5, May
1988, in Japanese.

21) J. Gailly, Gzip Version 1.2.4, Anonymous ftp from
prep.ai.mit.edu: /pub/gnu/gzip-1.2.4.tar.gz .

－10－ 中村博文 都城工業高等専門学校研究報告

