科 目 名 (英語表記	之)							ポートフォリオR3
学年・専攻系	斗 核	機械電気工学専攻・1年 単 位・期 間 後期週2時間(合計30時間) (自己学習時間:60時間)			<学生が記入する上での注意事項>			
担当教員		白濱 正尋	連絡先	電気情報工 白濱研	学科棟2階 オ	フィスア		【授業計画の説明】 枠内に○か×かを 記入すること。
て、p-n接合(ダイオード)、光デバイス(LED、太陽電池)などを扱う。								【理解の度合】(記入例)ファラデーの法則、交流の発生についてはほぼ理解できたが、渦電流についてはあまり理解できなかった。
大田町自、电平というくいのこと。								【試験の結果】定期試験の点数を記入し、試験全体の総評をしてください。(記入例)ファラデーの法則に関する基礎問題はできたが、応用問題が解けず、理解不足だった。
準備学習:1)数学(微積分、代数学など)、物理(力学)、電気磁気学を十分に理解しておくこと。 2)4年の半導体工学を復習しておくこと。 自己学習:1)輪講形式で英文テキストを読みながら授業を行うので、単語を調べ、訳をレポートで提出すること。 2)例題、演習問題を解き、レポートにまとめること。								【総合達成度】では、【達成目標】どおりに 目標を達成することができたかどうか、記 入してください。
【達成目標】 1)英文を通して、半導体物性基礎について理解できること。 2)英文を通して、半導体デバイス構造・動作原理について理解できること。 3)英文を通して、製造技術について理解できること。								ルーブリック評価の【自己評価】では、到 達したレベルに○をすること。 <教員が記入する上での注意事項>
							へ教員が記入する上での任息事項ン 教員は、◎が付いているところだけを記 入 ナスニレ	
ルーブリック	ク評価	学 理想的な到達レ (A	習 到 ベルの目安)		標 をレベルの目ち B)			ルーブリック評価とは設定された到達目標の合否および到達レベル(到達度の程度)を示す基準です。
評価到達目標	東項目1 人	半導体物性基礎、 帯図、半導体デバ こついて理解し、 と。	エネルギー イスの基本式 説明できるこ	半導体物性基 ギー帯図につ ること。	を礎、エネル いて説明でき	半導体物性基いて説明でき	を礎の概要につ ること。	【自己評価】 A · B · C
評価到達目標	栗項目2	半導体デバイス構 作原理について、 図、半導体デバイ 用い、説明できるご	エネルギー帯 スの基本式を	半導体デバイ 理について説	「ス構造・動作原 □明できること。	〔半導体デバイ できること。	ス構造が説明	【自己評価】 A · B · C
評価到達目標	真目3	製造技術について こ説明できること。	て理解し、詳細	製造技術につること。	いて説明でき	一部の製造技 要が説明でき	:術について概 ること。	【自己評価】 A ・ B ・ C
								【自己評価】 A · B · C
		到	達 度 評	平価	(%)			
評価方法 指標と評価割合	定期試験	かテスト	レポート	口頭発表	成果品実技	その他	合 計	成績の評価方法について
総合評価割合	20	20	60				100	・中間試験・期末試験および小テスト・演習、レポートで評価する。
知識の基本的な 理 解	10	10	30				50	
思考・推論・創造への適応力	10	10	30				50	評価基準について
汎用的技能								・ 学年成績60点以上を合格とする。
態度·志向性 (人間力)								
総合的な学習経験 と創造的思考力								
【教科書】 英文	テキスト。							
【参考資料】 S.M.Sze、Physics of Semiconductor Devices -2nd edition- (John Wiley & Sons) 清水博文ほか共著、実用理工学入門講座「基礎からの半導体工学」(日新出版) 高橋清著、「森北電気工学シリーズ4 半導体工学」(森北出版)								
高橋 【学習・教育目標・サフ			△4 干得体丄	.子八稌化出版	【JAE	BEE基準との対け e)、(d)	态】	
【学習・教育到達目標との対応】(高学年・専攻科) (B) (C)								

	【授業計画の説明】(実施状況の記入)		
授 業 要 目	内 容	時間	
授業計画の説明	授業計画・達成目標・成績の評価方法等の説明	1	
1. はじめに【課題】			【理解の度合】(◎教員は授業の実施状況を記入)
1-1 Introduction【課題1】	半導体デバイス・半導体製造技術の概要	1	
2. 熱平衡状態におけるエネルギーバンドとキャ リア濃度			
2-1 半導体材料【課題2】	半導体材料である単体・化合物半導体とその基礎特性	2	
2-2 結晶構造【課題3】	結晶構造におけるダイヤモンド構造、結晶面、結晶成長技 術について理解する。	2	
2-3 キャリア濃度【課題4】	価電子結合、エネルギー帯のバンドギャップと電気伝導に 及ぼすその影響、キャリア濃度について理解する。	2	
3.キャリア輸送現象【課題5】	ドリフトと拡散、電流密度の式、発生と再結合、連続の方程 式について理解する。	2	
【課題6】	ホール効果、熱イオン化放出・トンネル・高電界効果について理解する。	2	
(演習問題)【課題7】	復習、演習、小テスト	2	
【課題8】	16	2	
後期中間試験		(1. 5)	【試験の結果】試験の点数()
試験答案の返却及び解説	1		
4. 半導体デバイスpn接合【課題9】	pn接合の概要について理解する。	1	【理解の度合】(◎教員は授業の実施状況を記入)
4-1 製造工程【課題10】	製造工程について理解する。	2	
4-2 熱平衡状態【課題11】	接合後のエネルギー帯図を理解する。	2	
4-3 空乏層領域【課題12】	階段型、傾斜型接合のポアソンの式を理解する。	2	
4-4 空乏層容量【課題13】	接合容量が求められる。	2	
4-5 電流電圧特性【課題14】	電流電圧特性を理解する。	1	
4-6 逆方向特性	逆方向特性を理解する。		
(演習問題)【課題15】	復習、演習、小テスト	1	
	29.5		
学年末試験			【試験の結果】試験の点数()
試験答案の返却及び解説	試験問題の解説及びポートフォリオの記入	1	
	合計時間	30	【総合達成度】総合評価の点数()
F /++: -+/- \			【評価の実施状況】(◎教員は総合評価をを出した後に記入する。)
【備考】			