Connectivities of Networks and Subnetworks

Mamoru Tanaka
mamoru.tanaka@wpi-aimr.tohoku.ac.jp
AIMR, Tohoku University, Japan

AMIS2013 in Sendai Feb. 19 - Feb. 21, 2013

1 Purpose

To provide a relation between connectivities of a network and connectivities of some subnetworks.

2 Network

$G=(V, E):$ a network (V : the node set, E : the edege set)
Network theory has application in many disciplines including statistical physics, particle physics, computer science, biology, economics, operations research, and sociology.

3 Connectivity of Network

$G=(V, E):$ a network
k : a natural number ≥ 2
The k-way expansion constant $h_{k}(G)$ of G is defined as

$$
h_{k}(G):=\min \left\{\max _{i=1,2, \ldots, k} \frac{\left|\partial V^{i}\right|}{\left|V^{i}\right|}: V=\bigsqcup_{i=1}^{k} V^{i}, V^{i} \neq \emptyset\right\}
$$

where ∂F is the set of the edges connecting F and $V-F$.

$G^{1}=\left(V^{1}, E^{1}\right)$

The k-way expansion constant $h_{k}(G)$ is a strength of connectivity of G with respect to partitions into k subnetworks.

4 Examples

Example 1 (Unconnected network).
The number of the connected component of G is k if and only if
 $h_{k}(G)=0$ and $h_{k+1}(G)>0$.

Example 2 (Complete graph).
For $n, k \in \mathbb{N}, h_{k}\left(K^{k n}\right)=(k-1) n$.
Connectivity of complete graphs are very strong.

Example 3.

Let $G_{n, m}:=\left(V_{K^{n}} \cup V_{K^{m}}, E_{K^{n}} \cup E_{K^{m}} \cup\{v w\}\right)$ for $n, m \in \mathbb{N}$, where $v \in V_{K^{n}}$ and $w \in V_{K^{m}}$. Then $h\left(G_{n, m}\right)=1 / \min \{n, m\}$. For $n \in \mathbb{N}, h_{3}\left(G_{2 n, 2 n}\right)=n, h_{2}\left(G_{2 n, 2 n}\right)=1 / 2 n$.

5 Relation with eigenvalues of Laplacian

It is known that the k-way expansion constant $h_{k}(G)$ is estimated by the k-th eigenvalue of the Laplacian on the network G :

Theorem 4 (Lee-Gharan-Trevisan (2012)). There is a constant $C>0$ such that

$$
\begin{equation*}
\frac{\lambda_{k}(G)}{2 \operatorname{deg}(G)} \leq h_{k}(G) \leq C k^{2} \operatorname{deg}(G) \sqrt{\lambda_{k}(G)} \tag{1}
\end{equation*}
$$

for every connected networks G and every $k \in\{2, \ldots,|V|\}$, where $\operatorname{deg}(G)$ is the maximum number of edges incident to a node among its nodes.

6 Result

Lemma 5. For any k-partition $\left\{G^{i}=\left(V^{i}, E^{i}\right)\right\}_{i=1}^{k}$ of G

$$
h_{k+1}(G) \geq \min _{i=1,2, \ldots, k} h_{2}\left(G^{i}\right)
$$

Theorem 6. If $h_{k+1}(G) / 3^{k+1}>h_{k}(G)$ for some k, then there exists a k-partition $\left\{G^{i}=\left(V^{i}, E^{i}\right)\right\}_{i=1}^{k}$ of G satisfying

$$
\begin{gathered}
\frac{h_{k+1}(G)}{3^{k+1}} \leq \min _{i=1,2, \ldots, k} h_{2}\left(G^{i}\right) \\
\max _{i=1,2, \ldots, k} \frac{\left|\partial V^{i}\right|}{\left|V^{i}\right|} \leq 3^{k} h_{k}(G)
\end{gathered}
$$

This theorem says that if $h_{k+1}(G)$ is sufficiently large and $h_{k}(G)$ sufficiently small, then there is a k-partition such that every subgraphs in it have strong connectivity and connectivity between them is weak.

Similar theorem for a manifold with respect to k-th eigenvalues of the Laplacian on it was given by Funano-Shioya.

7 Coarse non-embeddability

We can define a natural distance to networks giving distance 1 to each edge.

A sequence of metric spaces $\left\{\left(X_{n}, d_{X_{n}}\right)\right\}_{n=1}^{\infty}$ is said to be coarsely embeddable into a metric space $\left(Y, d_{Y}\right)$ if there exist two non-decreasing functions $\rho_{1}, \rho_{2}:[0,+\infty) \rightarrow \mathbb{R}$ and maps $\left\{f_{n}: X_{n} \rightarrow Y\right\}_{n=1}^{\infty}$ such that

1. $\rho_{1}\left(d_{X_{n}}(x, y)\right) \leq d_{Y}\left(f_{n}(x), f_{n}(y)\right) \leq \rho_{2}\left(d_{X_{n}}(x, y)\right)$ for all $x, y \in X_{n}$ and n;
2. $\lim _{r \rightarrow \infty} \rho_{1}(r)=+\infty$.

Corollary 7. If a sequence of networks $\left\{G_{n}=\left(V_{n}, E_{n}\right)\right\}_{n=1}^{\infty}$ satisfies (i) $\left|V_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$; (ii) $\sup _{n \in \mathbb{N}} \operatorname{deg}\left(G_{n}\right)<\infty$; (iii) $\inf _{n \in \mathbb{N}} h_{k+1}\left(G_{n}\right)>0$ for some $k \in \mathbb{N}$, then it is not coarsely embeddable into any Hilbert space.

This means if $|V|$ is large, $\operatorname{deg}(G)$ is small and $h_{k+1}(G)$ is not small, then the metric structure of G is very different to the metric structure of Euclid space.

