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Introduction

Results

4G = N(©) e min 2(G)

A1(G): I-th eigenvalue of the Laplacian on a finite graph G

h|(G): the expander constant of G (a quantity of some connectivity)
{Gi}i'_lz a partition of G

N
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Introduction

Expander constant

G = (V, E) : afinite graph, i.e.,
V is a finite set, which is called the vertex set,
Ec{xy: X yeV,Xx#y}, where Xy = yx, the edge set.

The expander constant of G is oF
F

. [lOF] VI
h(G) =min{— : 1 <|F| < —
Fev | |F| 2

where 9F is the set of the edges connecting F and V — F.

This represents strength of connection between two disjoint vertex
sets.
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Introduction

Example
K™ denotes a complete graph, i.e.,
IVknl = mand Exm = {Xy : X,y € Vkm, X # y}.
Let Gn,,n, be a graph with Vg, . = Vkm U Vkm and
EGnl,nz = Exm U Ekn U {Xy} for some X € Vkm and y € Vkn,.
Then forn,ny, o € N

1
min{ng, n2} —

VA I ANIAN

Figure: Gy

h(K?) =n>1, h(Gn.n,) =

Figure: K*
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Introduction

Eigenvalues of Laplacian

degx) :=|{y eV : xy e E}| for x € V.

Definition
The Laplacian on Gis the [V]| X |V|-matrix Ag := D(G) — A(G),

deg(xi) ifi =]
0 otherwise,

1 ifxx;ekE

D(G)ij = { A(G)ij = {

0 otherwise,
where V = {Xg, X2,..., Xjv|}.

A1(G) £ 22(G) < -+ < Av(G) : the eigenvalues of Ag

m Gis connected & 15(G) > 0.

m The number of connected components of G is |
© A4(G) =0and 441(G) > 0.
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Introduction

Question

deg@G) := maxxev deg(x).

Theorem (Alon-Milman, Dodziuk)

AZ;G) < h(G) £ Y2 degG)12(G). )

This theorem implies that the second eigenvalue A>(G) also

represents some strength of connection between two disjoint
subgraphs.

Question

For | > 2, can we relate 4;(G) to some connectivity of a graph and
subgraphs as the inequalities (1)?

?
A(G) «— Some connectivity of G
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Results

Partition

Definition

A graph H is an induced subgraph of G
& VycV,andEy ={xye E: x,y € Vu}.

Induced subgraphs are determined by their vertex sets.

Definition
A partition of G is a family of induced subgraphs {G; = (V;, Ei)}i'_1
of Gsuch thatV = ”LlVi (disjoint union).

G2
Gy G3 G
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Results

Higher order expander constant

Definition

The higher order expander constant of G is

hi(G) := min { max % (Gi = (Vi Ei)}il=1 is a partition of G}

for each | € N.

In particular, h(G) = hy(G).

G2
G1 Gs
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Results

Example

1
h(K™ =n,  h3(Guz)=n  hao(Ganzn) = o

where Gonon Was a graph constracted by connecting K2" and K2"
by one edge.

A ANA,

Figure: K8 Figure: Gaa
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Results

Theorem 1

A© (G) < 3' Y2 degG)A(G) @)

2
for | > 2.

This shows the higher order expander constant h|(G) is estimated
by 4;(G) as the inequalities (1),

AZ;G) < h(G) < V2degB)(G).

This is also regarded as a numerical generalization of the fact

m The number of connected components of G is |
© A4(G) = 0and 4,;1(G) > 0.
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Introduction Results

For any partition {Gi}:_1 of G

| Tln 2(Gi) < 441(G). 3)

If for some | € N

141(G) > 2(1 + 1)3*1 /2 degG) i (G), @)

then there exists a partition {Gi}:_1 of G such that

A:1(G) < 2(1 + 1)3'+1 min_h(G). (5)

9?’

This theorem means that 4;.1(G) represents strength of connection
of each induced subgraph in a partition, if 2j+1(G) > A/(G).
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Results

Using (1), 42(G)/2 < h(G) and (3), minj=12 .1 22(Gi) < 414+1(G),
we obtain

Example

Ifl = 2and n> 2. 3% then Gon2n satisfies the assumption (4).

Figure: Ganon

The assumption (4) seems to be a very strong condition.

Problem

Can we weaken the assumption (4)?
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