1/16

Higher eigenvalues of the Laplacian on a graph and partitions of the graph

Mamoru Tanaka

Mathematical Institute, Tohoku University

The 4th Scienceweb GCOE International Symposium on "Weaving Science Web beyond Particle-Matter Hierarchy"

Feb 21, 2012

Tohoku University

ヘロン 人間 とくほ とくほ とう

2 Results

$$\lambda_l(G) \iff h_l(G) \iff \min_{i=1,2,\dots,l} \lambda_2(G_i)$$

 $\lambda_l(G)$: *l*-th eigenvalue of the Laplacian on a finite graph *G* $h_l(G)$: the expander constant of *G* (a quantity of some connectivity) $\{G_i\}_{i=1}^l$: a partition of *G*

Expander constant

G = (V, E): a finite graph, i.e., V is a finite set, which is called the vertex set, $E \subset \{xy : x, y \in V, x \neq y\}$, where xy = yx, the edge set.

Definition

The expander constant of G is $h(G) = \min_{F \in V} \left\{ \frac{|\partial F|}{|F|} : 1 \le |F| \le \frac{|V|}{2} \right\}$ F G

where ∂F is the set of the edges connecting F and V - F.

This represents strength of connection between two disjoint vertex sets.

Example

 K^m denotes a complete graph, i.e.,

 $|V_{K^m}| = m$ and $E_{K^m} = \{xy : x, y \in V_{K^m}, x \neq y\}$. Let G_{n_1,n_2} be a graph with $V_{G_{n_1,n_2}} = V_{K^{n_1}} \cup V_{K^{n_2}}$ and $E_{G_{n_1,n_2}} = E_{K^{n_1}} \cup E_{K^{n_2}} \cup \{xy\}$ for some $x \in V_{K^{n_1}}$ and $y \in V_{K^{n_2}}$. Then for $n, n_1, n_2 \in \mathbb{N}$

$$h(K^{2n}) = n \ge 1, \ h(G_{n_1,n_2}) = \frac{1}{\min\{n_1,n_2\}} \le 1.$$

・ロア・ロア・エリ・エア・ション

Example

 K^m denotes a complete graph, i.e.,

 $|V_{K^m}| = m$ and $E_{K^m} = \{xy : x, y \in V_{K^m}, x \neq y\}$. Let G_{n_1,n_2} be a graph with $V_{G_{n_1,n_2}} = V_{K^{n_1}} \cup V_{K^{n_2}}$ and $E_{G_{n_1,n_2}} = E_{K^{n_1}} \cup E_{K^{n_2}} \cup \{xy\}$ for some $x \in V_{K^{n_1}}$ and $y \in V_{K^{n_2}}$. Then for $n, n_1, n_2 \in \mathbb{N}$

$$h(K^{2n}) = n \ge 1, \ h(G_{n_1,n_2}) = \frac{1}{\min\{n_1,n_2\}} \le 1.$$

Example

 K^m denotes a complete graph, i.e.,

 $|V_{K^m}| = m$ and $E_{K^m} = \{xy : x, y \in V_{K^m}, x \neq y\}$. Let G_{n_1,n_2} be a graph with $V_{G_{n_1,n_2}} = V_{K^{n_1}} \cup V_{K^{n_2}}$ and $E_{G_{n_1,n_2}} = E_{K^{n_1}} \cup E_{K^{n_2}} \cup \{xy\}$ for some $x \in V_{K^{n_1}}$ and $y \in V_{K^{n_2}}$. Then for $n, n_1, n_2 \in \mathbb{N}$

$$h(K^{2n}) = n \ge 1, \ h(G_{n_1,n_2}) = \frac{1}{\min\{n_1,n_2\}} \le 1.$$

Eigenvalues of Laplacian

$$\deg(x) := |\{y \in V : xy \in E\}| \text{ for } x \in V.$$

Definition

The Laplacian on G is the $|V| \times |V|$ -matrix $\Delta_G := D(G) - A(G)$,

$$D(G)_{ij} := \begin{cases} \deg(x_i) & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases} \quad A(G)_{ij} := \begin{cases} 1 & \text{if } x_i x_j \in E \\ 0 & \text{otherwise,} \end{cases}$$

where $V = \{x_1, x_2, \dots, x_{|V|}\}.$

 $\lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_{|V|}(G)$: the eigenvalues of Δ_G

- *G* is connected $\Leftrightarrow \lambda_2(G) > 0$.
- The number of connected components of *G* is $l \Leftrightarrow \lambda_l(G) = 0$ and $\lambda_{l+1}(G) > 0$.

Question

 $\deg(G) := \max_{x \in V} \deg(x).$

Theorem (Alon-Milman, Dodziuk)

$$\frac{\lambda_2(G)}{2} \le h(G) \le \sqrt{2 \deg(G) \lambda_2(G)}.$$
 (1)

This theorem implies that the second eigenvalue $\lambda_2(G)$ also represents some strength of connection between two disjoint subgraphs.

Question

For l > 2, can we relate $\lambda_l(G)$ to some connectivity of a graph and subgraphs as the inequalities (1)?

$$\lambda_l(G) \stackrel{?}{\longleftrightarrow}$$
 Some connectivity of G

8/16

Partition

Definition

A graph *H* is an *induced subgraph* of *G* \iff $V_H \subset V$, and $E_H = \{xy \in E : x, y \in V_H\}$.

Induced subgraphs are determined by their vertex sets.

Definition

A partition of *G* is a family of induced subgraphs $\{G_i = (V_i, E_i)\}_{i=1}^l$ of *G* such that $V = \bigsqcup_{i=1}^l V_i$ (disjoint union).

Higher order expander constant

Definition

The higher order expander constant of G is

$$h_l(G) := \min\left\{\max_{i=1,2,\dots,l} \frac{|\partial V_i|}{|V_i|} : \{G_i = (V_i, E_i)\}_{i=1}^l \text{ is a partition of } G\right\}$$

for each $l \in \mathbb{N}$.

In particular, $h(G) = h_2(G)$.

		Results	Reference
Example			
<i>h</i> 1(1	$(X^{ln}) = n,$	$h_3(G_{2n,2n})=n, \qquad h_3(G_{2n,2n})=n, \qquad h_3($	$_2(G_{2n,2n})=\frac{1}{2n}$
where G_2 by one ed	a _{n,2n} was a g dge.	raph constracted by c	onnecting K^{2n} and K^{2n}
Fig	gure: K ⁶	Fig	ure: G _{4,4}

▲□▶ ▲母▶ ▲ 臣▶ ▲ 臣▶ ■ 少へで 11/16

Example		
$h_l(K^{ln})=n,$	$h_3(G_{2n,2n})=n,$	$h_2(G_{2n,2n})=\frac{1}{2n}$
where $G_{2n,2n}$ was a by one edge.	graph constracted by	connecting K^{2n} and K^{2n}
Figure: K ⁶	Fi	igure: <i>G</i> _{4,4}

Results

Theorem 1

$$\frac{\lambda_l(G)}{2l} \le h_l(G) \le 3^l \sqrt{2 \deg(G) \lambda_l(G)}$$
(2)

for l > 2.

This shows the higher order expander constant $h_l(G)$ is estimated by $\lambda_l(G)$ as the inequalities (1),

$$\frac{\lambda_2(G)}{2} \le h(G) \le \sqrt{2 \deg(G) \lambda_2(G)}.$$

This is also regarded as a numerical generalization of the fact

The number of connected components of *G* is $l \Leftrightarrow \lambda_l(G) = 0$ and $\lambda_{l+1}(G) > 0$.

Theorem 2

1 For any partition
$$\{G_i\}_{i=1}^l$$
 of G

$$\min_{i=1,2,\dots,l} \lambda_2(G_i) \le \lambda_{l+1}(G).$$
(3)

2 If for some $l \in \mathbb{N}$

$$\lambda_{l+1}(G) > 2(l+1)3^{l+1} \sqrt{2 \deg(G)\lambda_l(G)},$$
(4)

then there exists a partition $\{G_i\}_{i=1}^l$ of *G* such that

$$\lambda_{l+1}(G) \le 2(l+1)3^{l+1} \min_{i=1,2,\dots,l} h(G_i).$$
(5)

This theorem means that $\lambda_{l+1}(G)$ represents strength of connection of each induced subgraph in a partition, if $\lambda_{l+1}(G) \gg \lambda_l(G)$.

14/16

Using (1), $\lambda_2(G)/2 \leq h(G)$ and (3), $\min_{i=1,2,\dots,l} \lambda_2(G_i) \leq \lambda_{l+1}(G)$, we obtain

Example

If l = 2 and $n > 2 \cdot 3^4$, then $G_{2n,2n}$ satisfies the assumption (4).

Figure: $G_{2n,2n}$

The assumption (4) seems to be a very strong condition.

Problem

Can we weaken the assumption (4)?

- [1] N. Alon and V. D. Milman, λ₁, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. Theory Ser. B 38 (1985), no. 1, 73–88, DOI 10.1016/0095-8956(85)90092-9. MR 782626 (87b:05092)
- [2] Giuliana Davidoff, Peter Sarnak, and Alain Valette, *Elementary number theory, group theory, and Ramanujan graphs*, London Mathematical Society Student Texts, vol. 55, Cambridge University Press, Cambridge, 2003. MR 1989434 (2004f:11001)
- Jozef Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787–794, DOI 10.2307/1999107. MR 743744 (85m:58185)
- [4] Kei Funano and Takashi Shioya, *Concentration, Ricci curvature, and eigenvalues of laplacian*, preprint.
- [5] Mamoru Tanaka, *Higher eigenvalues and partitions of a graph*, preprint, arXiv:1112.3434.