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1 Introduction

2 Theorems

3 Outline of Proofs

λl(G) ←→ hl(G) ←→ min
i=1,2,...,l

λ2(Gi)

λl(G): l-th eigenvalue of the Laplacian on a finite graph G
hl(G): the expander constant of G (a quantity of some connectivity)
{Gi}li=1

: a partition of G

GG1

G2

G3
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Expander constant

Assume graphs are non-oriented, finite, and don’t have loops and
multiple edges.
G = (V, E) : a graph

Definition

The expander constant of G is

h(G) = min
F⊂V

{ |∂F|
|F|

: 1 ≤ |F| ≤
|V|
2

}
G

F
∂F

where ∂F is the set of the edges connecting F and V − F.

This represents strength of connection between two disjoint vertex
sets.
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Example

Let K2n, Kn1, Kn2 be complete graphs.
Let Gn1,n2 be a graph with VGn1,n2

= VKn1 ∪ VKn2 and
EGn1,n2

= EKn1 ∪ EKn2 ∪ {xy} for some x ∈ VKn1 and y ∈ VKn2 .
Then

h(K2n) = n ≥ 1, h(Gn1,n2) =
1

min{n1, n2}
≤ 1.

Figure: K4 Figure: G4,3
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Eigenvalues of Laplacian

deg(x) := |{y ∈ V : xy ∈ E}| for x ∈ V.

Definition

The Laplacian ∆G on G is a linear operator on RV = { f : V → R}
defined by

∆G f (x) := f (x) deg(x) −
∑
xy∈E

f (y)

for f ∈ RV and x ∈ V.

λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G) : the eigenvalues of the Laplacian

The number of connected components of G is l
⇔ λl(G) = 0 and λl+1(G) > 0.
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Expander constant and Second eigenvalue of Laplacian

deg(G) := maxx∈V deg(x).

Theorem (Alon-Milman, Dodziuk)

λ2(G)

2
≤ h(G) ≤

√
2 deg(G)λ2(G). (1)

This theorem implies that the second eigenvalue λ2(G) also
represents some strength of connection between two disjoint
subgraphs.
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Question

Question

For l > 2, can we relate λl(G) to some connectivity of a graph and
subgraphs as the inequalities (1)?

λl(G)

←
→ ?

Subgraphs of G

G
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Partition

Definition

A graph H is an induced subgraph of G
⇐⇒ VH ⊂ V, and EH = {xy ∈ E : x, y ∈ VH}.

Induced subgraphs are determined by their vertex sets.

Definition

A partition of G is a family of induced subgraphs {Gi = (Vi , Ei)}li=1
of G such that V = tl

i=1
Vi (disjoint union).

GG1

G2

G3
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Higher order expander constant

Definition

The higher order expander constant of G is

hl(G) := min
{

max
i=1,2,...,l

|∂Vi |
|Vi |

: {Gi = (Vi , Ei)}li=1
is a partition of G

}
for each l ∈ N.

In particular, h(G) = h2(G).

Example

hl(K ln) = n, h3(G2n,2n) = n, h2(G2n,2n) =
1

2n

where G2n,2n was a graph constracted by connecting K2n and K2n

by one edge.
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Theorem 1

λl(G)

2l
≤ hl(G) ≤ 3l

√
2 deg(G)λl(G) (2)

for every l ∈ N.

This is a generalization of the inequalities (1),

λ2(G)

2
≤ h(G) ≤

√
2 deg(G)λ2(G).

This is also regarded as a numerical generalization of the fact

The number of connected components of G is l
⇔ λl(G) = 0 and λl+1(G) > 0.
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Theorem 2

1 For any partition {Gi}li=1
of G

min
i=1,2,...,l

λ2(Gi) ≤ λl+1(G). (3)

2 If for some l ∈ N

λl+1(G) > 2(l + 1)3l+1
√

2 deg(G)λl(G), (4)

then there exists a partition {Gi}li=1
of G such that

λl+1(G) ≤ 2(l + 1)3l+1 min
i=1,2,...,l

h(Gi). (5)

This theorem means that λl+1(G) represents strength of connection
of each induced subgraph in a partition, if λl+1(G) � λl(G).
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Using (1), λ2(G)/2 ≤ h(G) and (3), min i=1,2,...,l λ2(Gi) ≤ λl+1(G),
we obtain the following example.

Example

If l = 2 and n > 2 · 34, then G2n,2n satisfies the assumption (4),

λ3(G2n,2n) > 2 · 34
√

2 deg(G2n,2n)λ2(G2n,2n).

Figure: G2n,2n

The assumption (4) seems to be a very strong condition.

Problem

Can we weaken the assumption (4)?
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Outline of Proofs

〈 f , g〉 :=
∑

x∈V f (x)g(x), ‖ f ‖ :=
√
〈 f , f 〉 for f , g ∈ RV

〈a, b〉 :=
∑

e∈V a(e)b(e), ‖a‖ :=
√
〈a, a〉 for a, b ∈ RE.

d : RV → RE, d f (xy) := | f (x) − f (y)| for f ∈ RV and xy ∈ E.

Then 〈∆G f , f 〉 = ‖d f‖2 for f ∈ RV , and consequently

λl+1(G) = sup
L l

inf
f∈RV

‖d f‖2

‖ f ‖2
: f ⊥ L l , f . 0

 (6)

λl(G) = inf
L l

sup
f∈RV

‖d f‖2

‖ f ‖2
: f ∈ L l , f . 0

 (7)

where L l is an l-dimensional subspace of RV .

13 / 22



. . . . . .

Introduction Theorems Outline of Proofs References

Key of Proofs

The keys of proofs of theorems are

Choice of L l in the inequalities (6) and (7),

λl+1(G) = sup
L l

inf
f∈RV

‖d f‖2

‖ f ‖2
: f ⊥ L l , f . 0

 (6)

λl(G) = inf
L l

sup
f∈RV

‖d f‖2

‖ f ‖2
: f ∈ L l , f . 0

 , (7)

Choice of a partition of G.
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Outline of Proof of λl(G)/2l ≤ hl(G) in (2)

For a partition {Gi = (Vi , Ei)}li=1
of G, let ψ0 ≡ 1 ∈ RV and

ψi(x) =


|Vi+1| if x ∈ ∪i

j=1
V j

−
∣∣∣∣∣∪i

j=1
V j

∣∣∣∣∣ if x ∈ Vi+1

0 otherwise

for i = 1, 2, . . . , l − 1. Then the subspace
P := 〈ψ0, ψ1, ψ2, . . . , ψl−1〉 of RV is l-dimensional. Then

λl(G) ≤ sup
f∈RV

‖d f‖2

‖ f ‖2
: f ∈ P, f . 0

 ≤ 2l max
i=1,2,...,l

|∂Vi |
|Vi |

,

by computing ‖d f‖2/‖ f ‖2 for f ∈ P. Hence λl(G) ≤ 2lh l(G).
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Outline of Proof of ( 3), min i=1,2,...,l λ2(Gi) ≤ λl+1(G)

For a partition {Gi = (Vi , Ei)}li=1
of G, define ψ0, ψ1, ψ2, . . . , ψl−1

and P = 〈ψ0, ψ1, ψ2, . . . , ψl−1〉 as in the previous slide. Then for
f ∈ RV with f ⊥ P we can show that

f |Vi ⊥ ψ0|Vi

for all i = 1, 2, . . . , l − 1. Using this, we get

‖d f‖2 ≥ min
i=1,2,...,l

λ2(Gi)‖ f ‖2.

Hence

λl+1(G) ≥ inf
f∈RV

‖d f‖2

‖ f ‖2
: f ⊥ P, f . 0

 ≥ min
i=1,2,...,l

λ2(Gi).
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Outline of Proof of hl(G) ≤ 3l
√

2 deg(G)λl(G) in (2)

We construct a partition {Gi = (Vi , Ei)}li=1
satisfying

hl(G) ≤ max
i=1,2,...,l

|∂Vi |
|Vi |

≤ 3l
√

2 deg(G)λl(G). (8)

(1) Take an induced subgraph H0 of G s.t.

|∂VH0|
|VH0|

= h(G) and |VH0| ≤
|V|
2
,

and set H1 := G − H0, where G − H0 means
the induced subgraph of G whose vertex set is
V − VH0,

G

H0 H1
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Outline of Proof of hl(G) ≤ 3l
√

2 deg(G)λl(G) in (2)

(2) Assume h(H i1) ≤ h(H j1) where i1, j1 ∈
{0, 1} and i1 , j1. Then take an induced sub-
graph H i10 of H i1 s.t.

|∂H i1VH i10|
|VH i10|

= h(H i1) and |VH i10| ≤
|VH i1 |

2
,

and set H i11 := H i1 − H i10, where
∂G1VG2 := {xy ∈ EG1|x ∈ VG2, y ∈ VG1−G2} for
graphs G2 ⊂ G1. G

H j1

H i10

H i11
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Outline of Proof of hl(G) ≤ 3l
√

2 deg(G)λl(G) in (2)

(3-1) If h(H j1) ≤ min{h(H i10), h(H i11)}, then
take a subgraph H j10 of H j1 s.t.

|∂H j1VH j10|
|VH j10|

= h(H j1) and |VH j10| ≤
|VH j1 |

2
,

and set H j11 := H j1 − H j10.
(3-2) If min{h(H i10), h(H i11)} < h(H j), then set
h(H i1i2) ≤ h(H i1 j2) where i2, j2 ∈ {0, 1} and
i2 , j2. Take a subgraph H i1i20 of H i1i2 s.t.

|∂H i1i2VH i1i20|
|VH i1i20|

= h(H i1i2) and |VH i1i20| ≤
|VH i1i2 |

2
,

and set H i1i21 := H i1i2 − H i1i20.

H j11

H j10

H i10

H i11

G

H j1

H i1 j2

H i1i20

H i1i21
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Outline of Proof of hl(G) ≤ 3l
√

2 deg(G)λl(G) in (2)

Inductively, we divide an undivided subgraph in
{Ha1a2...am} with the minimum expanding con-
stant, into a subgraph which attains the ex-
pander constant and the complement sub-
graph.
Repeat this procedure until the number of the
undivided subgraphs in {Ha1a2...am} becomes l.
Consequently we divided G into l subgraphs. G
Let {Gi = (Vi , Ei)}li=1

be the set of the undivided subgraphs in

{Ha1a2...am}. Then {Gi}li=1
is a partition, and we can prove (8),

hl(G) ≤ max
i=1,2,...,l

|∂Vi |
|Vi |

≤ 3l
√

2 deg(G)λl(G).
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Outline of Proof of ( 5), λl+1(G) ≤ 2(l + 1)3l+1 min i=1,2,...,l h(Gi)

Let {G̃i = (Ṽi , Ẽi)}l+1
i=1

be a partition constructed by deviding

{Gi = (Vi , Ei)}li=1
in the previous slide once more as the previous

procedure. Then

max
i=1,2,...,l+1

|∂Ṽi |
|Ṽi |

≤ 3l+1 max
{√

2 deg(G)λl(G), min
i=1,2,...,l

h(Gi)
}
.

Using (2) and the assumption in 2 in Theorem 2, we have

λl+1(G) ≤ 2(l + 1)hl+1(G)

≤ 2(l + 1) max
i=1,2,...,l+1

|∂Ṽi |
|Ṽi |

≤ 2(l + 1)3l+1 max
{√

2 deg(G)λl(G), min
i=1,2,...,l

h(Gi)
}

≤ 2(l + 1)3l+1 min
i=1,2,...,l

h(Gi).
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