Multi-way expansion constants and expander graphs

Mamoru Tanaka

Research Institute for Mathematical Sciences, Kyoto University

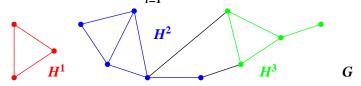
Geometry and Probability University Consortium Yamagata YOU campus station

19-21 October 2012

(日)

Overview

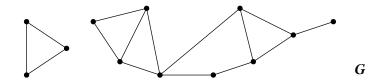
Give a relation between multi-way expansion constants h_k(G), h_{k+1}(G) of a graph G, which represent strength of connectivity of G, and a k-partition {Hⁱ}^k_{i=1} of G



- ► Using a relation between $h_k(G)$ and the *k*-th eigenvalue $\lambda_k(G)$ of the Laplacian on *G*, review the above relation
- See the coarse non-embeddability of a sequence of "generalized" expander graphs into Hilbert spaces

Graph

A graph G = (V, E) is a pair of a vertex set V and an edge set $E \subset \{vw : v, w \in V\}$.



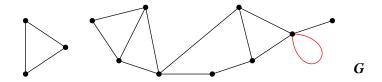
◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Assume graphs are finite $(|V| < \infty)$, undirected (vw = wv), and without loops $(vv \notin E)$.

 $deg(v) := |\{w \in V : vw \in E\}| \text{ for } v \in V.$ $deg(G) := \max_{v \in V} deg(v).$

Graph

A graph G = (V, E) is a pair of a vertex set V and an edge set $E \subset \{vw : v, w \in V\}$.



▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Assume graphs are finite $(|V| < \infty)$, undirected (vw = wv), and without loops $(vv \notin E)$.

 $deg(v) := |\{w \in V : vw \in E\}| \text{ for } v \in V.$ $deg(G) := \max_{v \in V} deg(v).$

Graph

A graph G = (V, E) is a pair of a vertex set V and an edge set $E \subset \{vw : v, w \in V\}$.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Assume graphs are finite $(|V| < \infty)$, undirected (vw = wv), and without loops $(vv \notin E)$.

 $deg(v) := |\{w \in V : vw \in E\}| \text{ for } v \in V.$ $deg(G) := \max_{v \in V} deg(v).$

Expansion constant h(G)

Definition (Expansion (Isoperimetric, Cheeger) constant) The expansion constant of G = (V, E) with $|V| \ge 2$ is defined as

$$h(G) = \min_{\emptyset \neq W \subset V} \left\{ \max\left\{ \frac{|\partial W|}{|W|}, \frac{|\partial W|}{|V - W|} \right\} \right\}.$$

Here $\partial W := \{vw : v \in W, w \in V - W\}$.

Note that h(G) > 0 if and only if G is connected.

For $\epsilon > 0$, a graph G with $h(G) \ge \epsilon$ is called an ϵ -expander graph.

Example

- For $n \in \mathbb{N}$, $h(K^{2n}) = n$.
- ▶ Let $G_{n_1,n_2} := (V_{K^{n_1}} \cup V_{K^{n_2}}, E_{K^{n_1}} \cup E_{K^{n_2}} \cup \{vw\})$ for $n_1, n_2 \in \mathbb{N}$, where $v \in V_{K^{n_1}}$, $w \in V_{K^{n_2}}$. Then $h(G_{n_1,n_2}) = 1/\min\{n_1, n_2\}$.

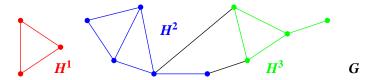
Figure: K⁴

Partition of a graph

A graph $H = (V_H, E_H)$ is said to be an *induced subgraph* of *G* if $V_H \subset V$ and $E_H = \{xy \in E : x, y \in V_H\}$. Induced subgraphs of *G* are determined by their vertices.

Definition (Partition of a graph)

A *k*-partition of *G* is a family $\{H^i = (V^i, E^i)\}_{i=1}^k$ of induced subgraphs of *G* satisfying $V = \bigsqcup_{i=1}^k V^i$ (disjoint union) and $V^i \neq \emptyset$ for all *i*.



ション 小田 マイビット ビックタン

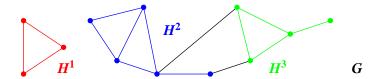
Multi-way expansion constant $h_k(G)$

Definition (Lee-Gharan-Trevisan)

For $k \in \mathbb{N}$, the *k*-way expansion constant of G = (V, E) with $|V| \ge k$ is defined as

$$h_k(G) := \min\left\{ \max_{i=1,2,...,k} \frac{|\partial V^i|}{|V^i|} : \{H^i = (V^i, E^i)\}_{i=1}^k \text{ is a } k \text{-partition} \right\}$$

for $k \in \{1, 2, ..., n\}$. In particular, $h_2(G) = h(G)$.



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Multi-way expansion constant $h_k(G)$

Definition (Lee-Gharan-Trevisan)

For $k \in \mathbb{N}$, the *k*-way expansion constant of G = (V, E) with $|V| \ge k$ is defined as

$$h_k(G) := \min\left\{ \max_{i=1,2,...,k} \frac{|\partial V^i|}{|V^i|} : \{H^i = (V^i, E^i)\}_{i=1}^k \text{ is a } k \text{-partition} \right\}$$

for $k \in \{1, 2, \dots, n\}$. In particular, $h_2(G) = h(G)$.

Example

For
$$n, k \in \mathbb{N}$$
, $h_k(K^{kn}) = (k-1)n$.

▶ For $n \in \mathbb{N}$, $h_3(G_{2n,2n}) = n$, $h_2(G_{2n,2n}) = 1/2n$.

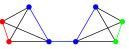


Figure: K⁶

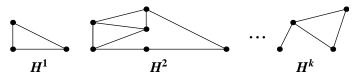
Figure: G_{4,4}

Some properties of $h_k(G)$

▶ $0 = h_1(G) \le h_2(G) \le h_3(G) \le \cdots \le h_n(G) \le \deg(G).$

Some properties of $h_k(G)$

- ▶ $0 = h_1(G) \le h_2(G) \le h_3(G) \le \cdots \le h_n(G) \le \deg(G).$
- ▶ h_k(G) = 0 and h_{k+1}(G) > 0 if and only if the number of the connected components of G is k.



In this situation if each connected components $H^i = (V^i, E^i)$ of *G* satisfies $|V^i| \ge 2$, then

$$h_{k+1}(G) = \min_{i=1,2,\dots,k} h(H^i).$$

In particular, h(G) > 0 if and only if G is connected.

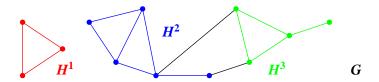
▲□▶▲□▶▲□▶▲□▶ ■ のへの

Connectivity of induced subgraphs of a partition

Lemma

For any k-partition $\{H^i = (V^i, E^i)\}_{i=1}^k$ of G with $|V^i| \ge 2$, we have

 $h_{k+1}(G) \geq \min_{i=1,2,\dots,k} h(H^i).$



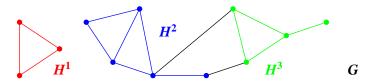
▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Connectivity of induced subgraphs of a partition

Lemma

For any k-partition $\{H^i = (V^i, E^i)\}_{i=1}^k$ of G with $|V^i| \ge 2$, we have

 $h_{k+1}(G) \geq \min_{i=1,2,\dots,k} h(H^i).$



Theorem

If $h_{k+1}(G)/3^{k+1} > h_k(G)$ for some $k \in \mathbb{N}$, then there exists a k-partition $\{H^i = (V^i, E^i)\}_{i=1}^k$ of G satisfying

$$\frac{h_{k+1}(G)}{3^{k+1}} \le \min_{i=1,2,\dots,k} h(H^i), \quad \max_{i=1,2,\dots,k} \frac{|\partial V_i|}{|V_i|} \le 3^k h_k(G).$$

Construction of the partition in Theorem 1

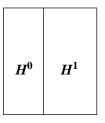
(1) Take an induced subgraph H^0 of G s.t.

$$\frac{|\partial V_{H^0}|}{|V_{H^0}|} = h(G) \text{ and } |V_{H^0}| \le \frac{|V|}{2},$$

and set $H^1 := G - H^0$, where $G - H^0$ means the induced subgraph of *G* whose vertex set is $V - V_{H^0}$, (2) Assume $h(H^{i_1}) \leq h(H^{j_1})$ where $i_1, j_1 \in$ {0,1} and $i_1 \neq j_1$. Then take an induced subgraph H^{i_10} of H^{i_1} s.t.

$$\frac{|\partial_{H^{i_1}}V_{H^{i_10}}|}{|V_{H^{i_10}}|} = h(H^{i_1}) \text{ and } |V_{H^{i_10}}| \leq \frac{|V_{H^{i_1}}|}{2},$$

and set $H^{i_11} := H^{i_1} - H^{i_10}$, where $\partial_{G_1}V_{G_2} := \{xy \in E_{G_1} | x \in V_{G_2}, y \in V_{G_1-G_2}\}$ for graphs $G_2 \subset G_1$.



 $H^{j_1} = H^{i_1 0}$

G

・ロト・西ト・ヨト・西ト・日・シタの

Construction of the partition in Theorem 1

(3-1) If $h(H^{j_1}) \leq \min\{h(H^{i_10}), h(H^{i_11})\}$, then take a subgraph H^{j_10} of H^{j_1} s.t.

$$\frac{|\partial_{H^{j_1}}V_{H^{j_10}}|}{|V_{H^{j_10}}|} = h(H^{j_1}) \text{ and } |V_{H^{j_10}}| \le \frac{|V_{H^{j_1}}|}{2},$$

$$\begin{array}{c|c} H^{j_{1}0} & H^{i_{1}1} \\ \\ \hline \\ H^{j_{1}1} & H^{i_{1}0} \end{array}$$

and set $H^{j_11} := H^{j_1} - H^{j_10}$. (3-2) If $\min\{h(H^{i_10}), h(H^{i_11})\} < h(H^j)$, then set $h(H^{i_1i_2}) \le h(H^{i_1j_2})$ where $i_2, j_2 \in \{0, 1\}$ and $i_2 \ne j_2$. Take a subgraph $H^{i_1i_20}$ of $H^{i_1i_2}$ s.t.

$$\frac{|\partial_{H^{i_1i_2}}V_{H^{i_1i_20}}|}{|V_{H^{i_1i_20}}|} = h(H^{i_1i_2}) \text{ and } |V_{H^{i_1i_20}}| \le \frac{|V_{H^{i_1i_2}}|}{2},$$

and set $H^{i_1i_21} := H^{i_1i_2} - H^{i_1i_20}$.

G

 H^{j_1}

 $H^{i_1i_21}$

 $H^{i_1 i_2 0}$

 $H^{i_1j_2}$

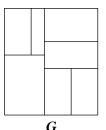
ロト 4 同下 4 ヨト 4 ヨト - ヨー のくで

Construction of the partition in Theorem 1

Inductively, we divide an undivided subgraph in $\{H^{a_1a_2...a_m}\}$ with the minimum expanding constant, into a subgraph which attains the expander constant and the complement subgraph.

Repeat this procedure until the number of the undivided subgraphs in $\{H^{a_1a_2...a_m}\}$ becomes k.

Consequently we divided G into k subgraphs. Then it is a partition in Theorem 1.



A sequence of expander graphs

A sequence of expander graphs is a sequence of finite graphs $\{G_n = (V_n, E_n)\}_{n=1}^{\infty}$ such that (i) $\lim_{n\to\infty} |V_n| = \infty$; (ii) $\sup_{n\in\mathbb{N}} \deg(G_n) < \infty$; (iii) $\inf_{n\in\mathbb{N}} h(G_n) > 0$.

A sequence of expander graphs

A sequence of expander graphs is a sequence of finite graphs $\{G_n = (V_n, E_n)\}_{n=1}^{\infty}$ such that (i) $\lim_{n\to\infty} |V_n| = \infty$; (ii) $\sup_{n\in\mathbb{N}} \deg(G_n) < \infty$; (iii) $\inf_{n\in\mathbb{N}} h(G_n) > 0$.

Corollary

Let $\{G_n = (V_n, E_n)\}_{n=1}^{\infty}$ be a sequence of finite graphs such that (i) $\lim_{n\to\infty} |V_n| = \infty$;

(ii) $\sup_{n\in\mathbb{N}} \deg(G_n) < \infty;$

(iii)' $\inf_{n \in \mathbb{N}} h_{k'+1}(G_n) > 0$ for some $k' \in \mathbb{N}$.

Then there are $k \in \mathbb{N}$ with $k \leq k'$, subsequence $\{G_m\}_{m=1}^{\infty}$ of $\{G_n\}_{n=1}^{\infty}$, and k-partitions $\{H_m^i\}_{i=1}^k$ of G_m for each m such that $\{H_m^i\}_{m=1}^{\infty}$ are sequences of expanders for each i = 1, 2, ..., k.

Eigenvalues $\lambda_k(G)$ of the Laplacian of a graph

Let G = (V, E) be a graph, and $V = \{v_1, v_2, \dots, v_n\}$. The *Laplacian* on *G* is an $n \times n$ symmetric integer matrix $\Delta_G := D(G) - A(G)$, where

$$D(G)_{ij} := \begin{cases} \deg(v_i) & (i = j) \\ 0 & (\text{otherwise}), \end{cases} \quad A(G)_{ij} := \begin{cases} 1 & (v_i v_j \in E) \\ 0 & (\text{otherwise}). \end{cases}$$

Let $\lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G)$ be the eigenvalues of Δ_G .

Example

- Complete graphs
 - $\lambda_1(K^n) = 0, \lambda_k(K^n) = n \text{ for } k = 2, 3, ..., n;$

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Cycles

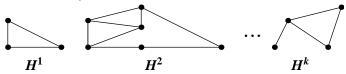
$$C^{n} := (\{1, 2, ..., n\}, \{vw; |v - w| = 1 \mod n\})$$

$$\{\lambda_{k}(C^{n})\}_{k=1}^{n} = \{2 - 2\cos(2\pi(j-1)/n)\}_{j=1}^{n}.$$

▶ $0 = \lambda_1(G) \le \lambda_n(G) \le 2 \deg(G).$

・ロト・日本・日本・日本・日本・日本・日本

- ▶ $0 = \lambda_1(G) \le \lambda_n(G) \le 2 \deg(G).$
- λ_k(G) = 0 and λ_{k+1}(G) > 0 if and only if the number of the connected components of G is k.

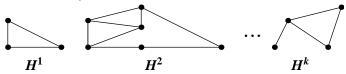


In this situation if each connected components H^i of *G* satisfy $|V^i| \ge 2$, then

$$\lambda_{k+1}(G) = \min_{i=1,2,\dots,k} \lambda_2(H^i).$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- ▶ $0 = \lambda_1(G) \le \lambda_n(G) \le 2 \deg(G).$
- λ_k(G) = 0 and λ_{k+1}(G) > 0 if and only if the number of the connected components of G is k.



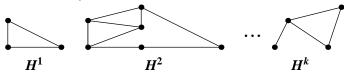
In this situation if each connected components H^i of *G* satisfy $|V^i| \ge 2$, then

$$\lambda_{k+1}(G) = \min_{i=1,2,\dots,k} \lambda_2(H^i).$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

As above $\lambda_k(G)$ and $h_k(G)$ have similar properties.

- ▶ $0 = \lambda_1(G) \le \lambda_n(G) \le 2 \deg(G).$
- λ_k(G) = 0 and λ_{k+1}(G) > 0 if and only if the number of the connected components of G is k.



In this situation if each connected components H^i of *G* satisfy $|V^i| \ge 2$, then

$$\lambda_{k+1}(G) = \min_{i=1,2,\dots,k} \lambda_2(H^i).$$

As above $\lambda_k(G)$ and $h_k(G)$ have similar properties.

Lemma

For any k-partition $\{H^i\}_{i=1}^k$ of G with $|V^i| \ge 2$, we have

$$\lambda_{k+1}(G) \geq \min_{i=1,2,\dots,k} \lambda_2(H^i).$$

Relation between $\lambda_k(G)$ and $h_k(G)$

Theorem (Lee-Gharan-Trevisan '12)

There is C > 0 such that for any connected graph G = (V, E) with $|V| \ge k$

$$\frac{\lambda_k(G)}{2\deg(G)} \le h_k(G) \le Ck^2 \deg(G) \sqrt{\lambda_k(G)}.$$

In reality, they prove similar inequalities, whose coefficients don't depends on deg(G), for the weighted multi-way expansion constant and eigenvalues of the normalized Laplacian on a graph *G*.

Relation between $\lambda_k(G)$ and $h_k(G)$

Corollary Let $\{G_n = (V_n, E_n)\}_{n=1}^{\infty}$ be a sequence of finite graphs such that (i) $\lim_{n\to\infty} |V_n| = \infty$; (ii) $\sup_{n \in \mathbb{N}} \deg(G_n) < \infty$; (iii)' $\inf_{n \in \mathbb{N}} \lambda_{k'+1}(G_n) > 0$ for some $k' \in \mathbb{N}$. Then there are $k \in \mathbb{N}$ with $k \leq k'$, subsequence $\{G_m\}_{m=1}^{\infty}$ of $\{G_n\}_{n=1}^{\infty}$, and *k*-partitions $\{H_m^i\}_{i=1}^k$ of G_m for each *m* such that $\{H_m^i\}_{m=1}^{\infty}$ are sequences of expanders for each i = 1, 2, ..., k.

This is a graph analog of the following result:

Theorem (Funano-Shioya)

A sequence of closed weighted Riemannian manifolds whose (k + 1)-st eigenvalues diverges to ∞ for a fixed natural number k is a union of k Lévy families.

Coarse non-embeddability

Definition (Gromov)

A sequence of metric spaces $\{(X_n, d_{X_n})\}_{n=1}^{\infty}$ is said to be *coarsely embeddable* into a metric space (Y, d_Y) if there exist two non-decreasing functions $\rho_1, \rho_2 : [0, +\infty) \rightarrow [0, +\infty)$ and maps $f_n : X_n \rightarrow Y \ (n = 1, 2, ...)$ such that

(1)
$$\lim_{r\to\infty} \rho_1(r) = +\infty;$$

(2)
$$\rho_1(d_{X_n}(x,y)) \leq d_Y(f_n(x), f_n(y)) \leq \rho_2(d_{X_n}(x,y))$$
 for all $x, y \in X_n$ and n .

We can endow a graph *G* with the path metric $d_G(x, y)$ between vertices *x* and *y* which is the minimum number of edges connecting *x* and *y*.

Theorem (Gromov)

A sequence of expander graphs is not coarsely embeddable into any Hilbert space.

Coarse non-embeddability

Proposition

Let $\{G_n\}_{n=1}^{\infty}$ be a sequence of graphs with $\sup_{n \in \mathbb{N}} \deg(G_n) < \infty$. If there are induced subgraphs H_n of G_n for all n such that $\{H_n\}_{n=1}^{\infty}$ is a sequence of expanders, then $\{G_n\}_{n=1}^{\infty}$ is not coarsely embeddable into any Hilbert space.

Hence we have the following:

Corollary

Let $\{G_n = (V_n, E_n)\}_{n=1}^{\infty}$ be a sequence of finite graphs such that (i) $\lim_{n \to \infty} |V_n| = \infty$;

(ii) $\sup_{n\in\mathbb{N}} \deg(G_n) < \infty;$

(iii)' $\inf_{n \in \mathbb{N}} h_{k'+1}(G_n) > 0$ for some $k' \in \mathbb{N}$.

Then $\{G_n\}_{n=1}^{\infty}$ is not coarsely embeddable into any Hilbert space.

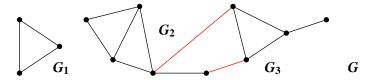
Thank you for your attention

Comment on the relation between $h_k(G)$ and $\lambda_k(G)$

Let $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ be the eigenvectors with $||x_l|| = 1$ associated to $\lambda_1(G), \lambda_2(G), \ldots, \lambda_k(G)$ respectively. Then we can write

$$\lambda_l(G) = \langle \Delta_G x_l, x_l \rangle = \sum_{v_i v_j \in E} |(x_l)_i - (x_l)_j|^2.$$

Very roughly speaking, the *k*-partition $\{G_i = (V_i, E_i)\}_{i=1}^k$ which attain $h_k(G)$ is obtained by dividing *G* along edges $\{v_iv_j\}$ which $|(x_l)_i - (x_l)_j|$ are larger than the others for each l = 1, 2, ..., k.



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Random graph

"The second eigenvalue of random graph (associated to d) is bounded below by a positive constant."

Random graph

"The second eigenvalue of random graph (associated to *d*) is bounded below by a positive constant." For $n, d \in \mathbb{N}$, let $P_{n,d}$ be the uniform distribution on $\Pi_{n,d} := \left\{ \{\pi_j\}_{j=1}^d : \pi_j \text{ are permutations on } \{1, 2, \dots, n\} \right\}$. For $\pi = \{\pi_j\}_{j=1}^d \in \Pi_{n,d}$, we define the graph

$$G(\pi) := \left(\{1, 2, \dots, n\}, \{i\pi_j(i) : 1 \le i \le n, 1 \le j \le d, i \ne \pi_j(i)\}\right).$$

Then $\deg(G(\pi)) \leq 2d$.

Theorem (cf. Friedman '03)

For $d \ge 2$ there is a positive constant C such that

$$\lim_{n\to\infty}P_{n,d}\left(\left\{\pi\in\Pi_{n,d}:\lambda_2\left(G(\pi)\right)>C\right\}\right)=1.$$

(Moreover, he gave the best possible constant of C and the order for 2d-regular graphs which allows loops and multiple edges.)

▲□▶▲□▶▲□▶▲□▶ ■ のへで