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Motivation

In Mathematics, symmetry of structures is represented by groups.
The study of properties of groups is important. In this talk, we
consider properties of a finitely generated group geometrically.
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Property of Γ f Property of G

Our theorem has the form of

” Γ has a group property⇐⇒ G has a graph property ”.
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Finitely generated groups

Finitely generated groups

Definition (Finitely generated group)

A group Γ is finitely generated
:⇐⇒ ∃ a finite subset S ⊂ Γ such that

∀γ ∈ Γ, γ = s1s2 · · · sk for ∃s1, s2, . . . , sk ∈ S.

In this talk, we consider only finitely generated infinite groups.

Example

Free abelian groups Zn, free non-abelian groups Fn, SL(n,Z), etc.
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Finitely generated groups

Property (F`p(Γ))

Γ : finitely generated group with a finite generating subset S

`p(Γ) :=

 f : Γ → R
∣∣∣∣∣∣ ‖ f ‖p :=

∑
γ∈Γ
| f (γ)|p < ∞

 (p > 1)

Definition (Property (F`p(Γ)))

For p > 1, Γ has Property (F`p(Γ))
:⇐⇒ ∀ affine isometric action α : Γy `p(Γ) has a fixed point.
has a fixed point;

∃ f0 ∈ `p(Γ) such that α(γ, f0) = f0 for ∀γ ∈ Γ.
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Finitely generated groups

Known Examples and Result

Example (Groups with Property (F`p(Γ)) for all p > 1)

SL(n,Z) (n ≥ 3)

Example (Groups without Property (F`2(Γ)))

SL(2,Z), Amenable groups

Example (Groups without Property (F`p(Γ)) for all p > 1)

Free abelian groups Zn, Free non-abelian groups Fn

Fact (cf. Yu ’05, Bourdon-Martin-Valette ’05)

∃Γ with Property (F`2) and without Property (F`p) for a large p > 2.
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Finitely generated groups

Property (F`p(Γ))

In this talk, we

consider Property (F`p(Γ)) for an affine isometric action with
λΓ,p as the linear part,

give one partial characterization of it using a graph property.

Here, the left regular representation

λΓ,p : Γy `p(Γ) ; λΓ,p(γ, f ) := f (γ ·)

for f ∈ `p(Γ), γ ∈ Γ.
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Cayley graphs

Cayley graphs

Γ : a finitely generated infinite group
S : a finite generating set of Γ s.t. if s ∈ S then s−1 ∈ S, and id < S

Definition (Cayley graph)

The graph G = (Γ, E) is the Cayley graph of Γ, where

Γ: the vertex set,

E := {{x, sx} ⊂ V | x ∈ Γ, s ∈ S}: the edge set.

r rx sx
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Cayley graphs

Example of Cayley graphs

(Z2,+); S = {(1, 0), (−1, 0), (0, 1), (0,−1)}

rr
rr
rr
r

rr
rr
rr
r

rr
rr
rr
r

rr
rr
rr
r

rr
rr
rr
r

rr
rr
rr
r

rr
rr
rr
r

F2; S = {s1, s−1
1
, s2, s−1

2
}

q
q

q
q q

q

q

qq

qq
q qq q

q q

qq q

qq q

qqqq qq

qqqq qq
q qq qqq

q qq q qq
q qq q qq

Mamoru Tanaka Mathematical Institute, Tohoku University

p-Laplacian on finitely generated groups



. . . .

. . . .

Preliminaries Result Summary and Future Issues References

Cayley graphs

p-Dirichlet finite function

For f : Γ → R, x ∈ Γ and s ∈ S, define

ds f (x) := f (sx) − f (x): the difference of f .

r rsx x

Dp(Γ) := { f : Γ → R | ds f ∈ `p(Γ), ∀s ∈ S} ⊃ `p(Γ)

‖ f ‖Dp(Γ) :=

 1

|S|
∑
s∈S
‖ds f ‖p

1/p : semi-norm on Dp(Γ)

The elements in Dp(Γ) are called p-Dirichlet finite functions.
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Cayley graphs

p-Laplacian

Definition

The p-Laplacian ∆p : Dp(Γ) → `q(Γ) (q = p/(p− 1)) is defined by

∆p f (x) :=
1

|S|
∑
s∈S
|ds f (x)|p−2(ds f (x)),

where, if p < 2 and ds f (x) = 0, we set |ds f (x)|p−2 = 0.

If p = 2,

∆2 f (x) :=
1

|S|
∑
s∈S

f (sx) − f (x).
r r
r

r
r
x s1x

s2x

s3x

s4x
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Theorem

Theorem (T.)

Let p > 1. The following are equivalent:

(i) Every affine isometric action α of Γ on `p(Γ) with λΓ,p as the
linear part has a fixed point.

(ii) ∃C > 0 such that ∀ f ∈ Dp(Γ) satisfies∥∥∥∆p f
∥∥∥

q ≥ C‖ f ‖p−1
Dp(Γ)
,

where q = p/(p− 1).
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Note for Theorem

When p = 2, the condition (ii) is

(ii)2 ∃C > 0 such that ∀ f ∈ D2(Γ) satisfies ‖∆2 f ‖2 ≥ C‖ f ‖D2(Γ).

We can prove that (ii)2 implies

(ii)′
2
∃C > 0 such that ∀ f ∈ `2(Γ) satisfies ‖∆2 f ‖2 ≥ C‖ f ‖2.

(ii)′
2
⇔ ‖∆2‖`2(Γ)→`2(Γ) ≥ C, that is,

the spectrum of ∆2 is bounded below by C > 0.
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Summary and Future Issues

Summary

If Γ does not satisfy (ii) in the theorem, then Γ does not have
Property (F`p(Γ)).

A graph property ⇒ A group property
(not (ii) in the theorem) (without Property (F`p(Γ)))

Future Issues

Actually, it is not easy to make sure of the condition (ii) in the
theorem. So we should find some example not satisfying (ii) in the
theorem.
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Thank you very much.
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