p-Laplacian on finitely generated groups

Mamoru Tanaka

Mathematical Institute, Tohoku University

The 3rd Scienceweb GCOE International Symposium Feb 18, 2011 Tohoku University

Mamoru Tanaka

Mathematical Institute, Tohoku University

Preliminaries 0000 0000	Result	Summary and Future Issues	References

Motivation

In Mathematics, symmetry of structures is represented by groups. The study of properties of groups is important. In this talk, we consider properties of a finitely generated group geometrically.

Our theorem has the form of

" Γ has a group property $\iff G$ has a graph property ".

Mamoru Tanaka

- Finitely generated groups
- Cayley graphs

2 Result

Mamoru Tanaka

Mathematical Institute, Tohoku University

Finitely generated groups

References

Finitely generated groups

Definition (Finitely generated group)

Result

A group Γ is finitely generated

 $: \iff \exists$ a finite subset $S \subset \Gamma$ such that

$$\forall \gamma \in \Gamma, \gamma = s_1 s_2 \cdots s_k \text{ for } \exists s_1, s_2, \ldots, s_k \in S.$$

In this talk, we consider only finitely generated infinite groups.

Example

Free abelian groups \mathbb{Z}^n , free non-abelian groups F_n , $SL(n, \mathbb{Z})$, etc.

Mamoru Tanaka

Mathematical Institute, Tohoku University

Preliminaries o●oo oooo	Result	Summary and Future Issues	References
Finitely generated groups			

Property $(F_{\ell^p(\Gamma)})$

 Γ : finitely generated group with a finite generating subset S

$$\ell^p(\Gamma) := \left\{ f: \Gamma \to \mathbb{R} \; \middle| \; \|f\|_p := \sum_{\gamma \in \Gamma} |f(\gamma)|^p < \infty \right\} \; \; (p > 1)$$

Definition (Property $(F_{\ell^p(\Gamma)}))$

For p > 1, Γ has Property $(F_{\ell^p(\Gamma)})$: $\iff \forall$ affine isometric action $\alpha : \Gamma \frown \ell^p(\Gamma)$ has a fixed point. has a fixed point;

 $\exists f_0 \in \ell^p(\Gamma)$ such that $\alpha(\gamma, f_0) = f_0$ for $\forall \gamma \in \Gamma$.

Mamoru Tanaka

Finitely generated groups

References

Known Examples and Result

Example (Groups with Property $(F_{\ell^p(\Gamma)})$ for all p > 1)

 $SL(n,\mathbb{Z}) \ (n \geq 3)$

Example (Groups without Property $(F_{\ell^2(\Gamma)})$)

 $SL(2,\mathbb{Z})$, Amenable groups

Example (Groups without Property $(F_{\ell^p(\Gamma)})$ for all p > 1)

Free abelian groups \mathbb{Z}^n , Free non-abelian groups F_n

Fact (cf. Yu '05, Bourdon-Martin-Valette '05)

 $\exists \Gamma$ with Property (F_{ℓ^2}) and without Property (F_{ℓ^p}) for a large p > 2.

Mamoru Tanaka

Mathematical Institute, Tohoku University

Preliminaries ooo● oooo	Result	Summary and Future Issues	References
Finitely generated groups			

Property ($F_{\ell^p(\Gamma)}$)

In this talk, we

consider Property $(F_{\ell^p(\Gamma)})$ for an affine isometric action with $\lambda_{\Gamma,p}$ as the linear part,

give one partial characterization of it using a graph property.
 Here, the left regular representation

$$\lambda_{\Gamma,p}: \Gamma \frown \ell^p(\Gamma) ; \lambda_{\Gamma,p}(\gamma, f) := f(\gamma \cdot)$$

for $f \in \ell^p(\Gamma)$, $\gamma \in \Gamma$.

Mamoru Tanaka

Preliminaries ○○○○ ●○○○	Result	Summary and Future Issues	References
Cayley graphs			

Cayley graphs

- Γ : a finitely generated infinite group
- S : a finite generating set of Γ s.t. if $s \in S$ then $s^{-1} \in S$, and $id \notin S$

Definition (Cayley graph)

The graph $G = (\Gamma, E)$ is the Cayley graph of Γ , where

- Γ: the vertex set,
- $E := \{\{x, sx\} \subset V \mid x \in \Gamma, s \in S\}$: the edge set.

Preliminaries	
0000	
0000	

Result

Summary and Future Issues

References

Cayley graphs

Example of Cayley graphs

Mamoru Tanaka

Mathematical Institute, Tohoku University

Preliminaries ○○○○ ○○●○	Result	Summary and Future Issues	References
Cayley graphs			

p-Dirichlet finite function

• For
$$f: \Gamma \to \mathbb{R}$$
, $x \in \Gamma$ and $s \in S$, define
 $d_s f(x) := f(sx) - f(x)$: the difference of f .
• $x \to x$
• $D_p(\Gamma) := \{f: \Gamma \to \mathbb{R} \mid d_s f \in \ell^p(\Gamma), \forall s \in S\} \supset \ell^p(\Gamma)$
 $||f||_{D_p(\Gamma)} := \left(\frac{1}{|S|} \sum_{s \in S} ||d_s f||_p\right)^{1/p}$: semi-norm on $D_p(\Gamma)$
The elements in $D_p(\Gamma)$ are called p -Dirichlet finite functions.

Mamoru Tanaka

Preliminaries	Result	Summary and Future Issues	References
0000 0000			
Cayley graphs			

p-Laplacian

Definition

The *p*-Laplacian $\Delta_p : D_p(\Gamma) \to \ell^q(\Gamma) \ (q = p/(p-1))$ is defined by

$$\Delta_p f(x) := \frac{1}{|S|} \sum_{s \in S} |d_s f(x)|^{p-2} (d_s f(x)),$$

where, if p < 2 and $d_s f(x) = 0$, we set $|d_s f(x)|^{p-2} = 0$.

If
$$p = 2$$
,
 $\Delta_2 f(x) := \frac{1}{|S|} \sum_{s \in S} f(sx) - f(x)$.
 $s_{3x} = \frac{s_{2x}}{x} \cdot s_{1x}$

Mamoru Tanaka

Mathematical Institute, Tohoku University

Preliminaries Result Summary and Future Issues References

Theorem

Theorem (T.)

Let p > 1. The following are equivalent:

- (i) Every affine isometric action α of Γ on l^p(Γ) with λ_{Γ,p} as the linear part has a fixed point.
- (ii) $\exists C > 0$ such that $\forall f \in D_p(\Gamma)$ satisfies

$$\left\|\Delta_p f\right\|_q \ge C \|f\|_{D_p(\Gamma)}^{p-1},$$

where q = p/(p - 1).

Mamoru Tanaka

Mathematical Institute, Tohoku University

Note for Theorem

When p = 2, the condition (ii) is (ii)₂ $\exists C > 0$ such that $\forall f \in D_2(\Gamma)$ satisfies $||\Delta_2 f||_2 \ge C||f||_{D_2(\Gamma)}$.

We can prove that (ii)₂ implies (ii)'₂ $\exists C > 0$ such that $\forall f \in \ell_2(\Gamma)$ satisfies $||\Delta_2 f||_2 \ge C||f||_2$.

(ii)'₂
$$\Leftrightarrow$$
 $||\Delta_2||_{\ell_2(\Gamma) \to \ell_2(\Gamma)} \ge C$, that is,
the spectrum of Δ_2 is bounded below by $C > 0$.

Mamoru Tanaka

References

Summary and Future Issues

Summary

If Γ does not satisfy (ii) in the theorem, then Γ does not have Property ($F_{\ell^p(\Gamma)}$).

⇒

A graph property (not (ii) in the theorem) A group property (without Property $(F_{\ell^p(\Gamma)})$)

Future Issues

Actually, it is not easy to make sure of the condition (ii) in the theorem. So we should find some example not satisfying (ii) in the theorem.

Mamoru Tanaka

Mathematical Institute, Tohoku University

References

- M. Bourdon, F. Martin, A. Valette, Vanishing and non-vanishing for the first L^p-cohomology of groups, Comment. Math. Helv. 80 (2005), 377–389.
- M. Tanaka, Property (T_B) and Property (F_B) restricted to an *irreducible representation*, preprint.
 - G. Yu, *Hyperbolic groups admit proper affine isometric actions on* ℓ^{*p*}*-spaces*, Geom. Funct. Anal. **15** (2005), 1144–1151.

Mamoru Tanaka

Mathematical Institute, Tohoku University

Thank you very much.

Mamoru Tanaka

Mathematical Institute, Tohoku University