Property (T) for uniformly convex uniformly smooth Banach spaces

Mamoru Tanaka (Mathematical Institute Tohoku University)

Żuk gives a sufficient condition for a finitely generated group to have Kazhdan's property (T) ([Żuk03]). We generalize a Żuk's result to the analogue of the notion for uniformly convex and uniformly smooth Banach spaces.

1 Preliminaries

Definition. A (real or complex) Banach space (B, || ||) is called uniformly convex if for every $\epsilon > 0$ there is a constant $\delta(\epsilon) > 0$ such that $||u + v|| \le 2 - \delta(\epsilon)$ for every $u, v \in B$ satisfying ||u|| = ||v|| = 1 and $||u - v|| \ge \epsilon$. (B, || ||) is called uniformly smooth if the dual space $(B^*, || ||_*)$ is uniformly convex. Hereafter uniformly convex and uniformly smooth is abbreviated to ucus.

If *B* is a ucus Banach space, there is a one-to-one duality map $*: B \to B^*$, $u \mapsto u^*$ which satisfies $||u^*||_* = ||u||$ and $u^*(u) = ||u||^2$. In particular, *B* is reflexive.

Example. Lebesgue spaces $L^p([0,1])$ with $1 are ucus. But <math>L^1([0,1])$ and $L^{\infty}([0,1])$ are not ucus.

 $(B, \parallel \parallel)$: a ucus Banach space

 Γ : a finitely generated group

S : a finite generating subset of Γ with $S=S^{-1}$ and $\operatorname{id}\not\in S$

 $\rho: \Gamma \to O(B)$: a linear isometric Γ -representation on Bwhere O(B) is the group of all invertible linear isometries on $(B, \| \|)$

A linear isometric Γ -representation $\rho: \Gamma \to O(B)$ descends to a linear isometric Γ -representation $\rho': \Gamma \to O(B')$ on $B' = B/B^{\rho(\Gamma)}$ where $B^{\rho(\Gamma)}$ is the closed subspace of Γ -fixed vectors.

<u>Definition</u> ([BFGM07]). Γ is said to have property (T_B) if for every $\rho : \Gamma \to O(B)$ there exists a constant $K(S, \rho) > 0$ such that $\rho' : \Gamma \to O(B')$ satisfies

$$\max_{s \in S} \|\rho'(s)u - u\|' \ge K(S, \rho) \|u\|' \tag{1}$$

for every $u \in B'$ where $\| \|'$ is the norm on B'.

<u>Theorem</u> ([BFGM07]). For $1 , <math>\Gamma$ has Kazhdan's property (T) if and only if Γ has property ($T_{L^p([0,1])}$).

$$\begin{split} L(S): \text{ an oriented finite graph whose vertex set is } S \text{ and} \\ \text{edge set is } T := \{(s,s') \in S \times S | s^{-1}s' \in S \} \\ \text{We can take } S \text{ so that } L(S) \text{ is connected. Then } n(s) := \\ |\{s' \in S | (s,s') \in T\}| > 0 \text{ for } s \in S. \end{split}$$

The spaces $M := \{f : S \to B\}$ and $M_* := \{g^* : S \to (B)^*\}$ which have respective norms defined by

$$\|f\|_{M}^{2} := \sum_{s \in S} \|f(s)\|^{2} \frac{n(s)}{|T|}; \|g^{*}\|_{M_{*}}^{2} := \sum_{s \in S} \|g^{*}(s)\|_{*}^{2} \frac{n(s)}{|T|}$$

for $f \in M$ and $g^* \in M_*$ are ucus Banach spaces. Let

$$\langle f,g^*
angle := \sum_{s\in S} g^*(s)(f(s))rac{n(s)}{|T|}$$

for $f \in M$ and $g^* \in M_*$. Then the map $*: M \to M_*$, $f \mapsto f^*$ defined by $f^*(s) := (f(s))^*$ for every $s \in S$ is a one-to-one duality map.

<u>Definition</u>. For $f \in M$, we define

$$(\Delta_B f)(s) := f(s) - rac{1}{n(s)} \sum_{(s,s') \in T} f(s').$$

The map Δ_B is an analogue of a discrete Laplace operator. For $f\in M$ and $g^*\in M_*$ we define

$$(Pf)(s) := f(s) - \sum_{s' \in S} f(s') rac{n(s')}{|T|}, \ (P^*g^*)(s) := g^*(s) - \sum_{s' \in S} g^*(s') rac{n(s')}{|T|}.$$

The maps $P: M \to M$ and $P^*: M_* \to M_*$ are projections into the "orthogonal" complements of subspaces which consist of constant maps in M_* and M respectively.

2 Results

<u>Theorem</u>. B: a ucus Banach space Γ : a group generated by a finite subset S as above If L(S) is connected and

$$\lambda_B(L(S)):= \inf_{f\in M; Pf
eq 0} rac{|\langle \Delta_B(Pf), P^*f^*
angle|}{|\langle Pf, P^*f^*
angle|} > rac{1}{2},$$

then Γ has property (T_B) . Moreover, we can take a constant $2 - 1/\lambda_B(L(S))$ as $K(S, \rho)$.

<u>Remark</u>. If *B* is a Hilbert space, $\lambda_B(L(S))$ is the smallest non-zero eigenvalue of the discrete Laplace operator acting on $l^2(L(S), n)$. In this case, this theorem is the Żuk's original one, and he gives a group generated by *S* for which $\lambda_B(L(S))$ can be computed easily.

References

- [BFGM07] U. Bader, A. Furman, T. Gelander and N. Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no.1, 57– 105.
- [Żuk03] A. Żuk, Property (T) and Kazhdan constants for discrete groups Geom. funct. anal. 13 (2003), 643– 670.