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Introduction

The main theme of this thesis is to prove the existence of a global fixed point

of an isometric action of a finitely generated group (and a compactly generated

group) on a metric space with a convex metric.

We say a topological group G has Property (FH) if, for any infinite dimen-

sional real Hilbert space H, every continuous isometric action of G on H has

a global fixed point. For a σ-compact locally compact group, it is known that

Property (FH) is equivalent to Kazhdan’s Property (T ), which we shortly call

Property (T ). Property (T ) is a condition introduced by Kazhdan [Kaz67] and

was defined in terms of unitary representations of a topological group in ques-

tion. Property (T ) has played important roles in many different subjects including

the structure of infinite groups, combinatorics, operator algebras, ergodic theory,

smooth dynamics, random walks and so on (see [BHV08]). Its important property

is that locally compact groups with Property (T ) are compactly generated. In

particular, discrete groups with Property (T ) are finitely generated. The special

linear groups SLn(R), n ≥ 3, and the symplectic groups Sp2n(R), n ≥ 2, are

known to have Property (T ). On the other hand, free Abelian groups Rn, Zn

and free groups are compactly generated but do not have Property (T ). Until

recently, many examples of groups with Property (T ) have been found. For exam-

ple, Żuk [Żuk03] gave a criterion for a finitely generated group to have Property

(T ), which was stated by means of only finitely many relations in the presentation

of the group. Using this criterion, he showed, for example, that there are many

infinite hyperbolic groups with Property (T ) in terms of “random groups”.

Izeki and Nayatani [IN05] obtained a sufficient condition for an isometric ac-

tion α of a discrete group Γ on a Hadamard space Y to have a global fixed point.

Here by a Hadamard space we mean a complete metric space with a “nonpositive

curvature”. For instance, Hilbert spaces and simply connected complete Rieman-

nian manifolds with nonpositive sectional curvature are Hadamard spaces. Their

sufficient condition is described in terms of an energy functional Eα on the space

of all α-equivariant maps from a countable Γ-space equipped with an admissible

weight into Y . If Eα vanishes at an α-equivariant map f , then the image of f
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is a global fixed point of α. To prove the existence of a global fixed point, they

used the gradient flow associated with Eα, which was introduced by Jost [Jos98]

and Mayer [May98]. The gradient flow decreases Eα in the most efficient way.

Subsequently, for a finitely generated group Γ and a family L of Hadamard

spaces which is stable under scaling ultralimit, Izeki, Kondo, and Nayatani [IKN09]

studied a fixed-point property defined as follows: The group Γ has this property

if, for any Y ∈ L, every isometric action of Γ on Y has a global fixed point.

This property is a generalization of Property (FH). Indeed, the family of all real

Hilbert spaces is stable under scaling ultralimit. Furthermore, Γ has Property

(FH) if and only if every isometric action of Γ on any real Hilbert space has a

global fixed point. They gave a necessary and sufficient condition for Γ to have

the fixed-point property for L in terms of Eα.

On the other hand, Bader, Furman, Gelander, and Monod [BFGM07] intro-

duced another generalization of Property (FH) and a generalization of Property

(T ) to a Banach space B. They say a topological group G has Property (FB)

if every continuous affine isometric action of G on B has a global fixed point.

Note that it follows from Mazur-Ulam theorem that an isometric action on a real

Banach space is affine (see [BL00]). They also define Property (TB), which is a

generalization of Property (T ) to continuous linear isometric representations on

B. According to a theorem by Guichardet, a σ-compact locally compact group

with Property (FB) has Property (TB). However, there exists a finitely generated

group which has Property (TB) but does not have Property (FB) for some B.

Furthermore, for a σ-compact locally compact groups and 1 < p < ∞, Property

(T ) is equivalent to Property (TLp([0,1])). On the contrary, Yu [Yu05] proved that

an infinite hyperbolic group G, which may have Property (T ), does not have

Property (FLp(G)) if p is large enough. As these results show, in general, Property

(FB) and Property (TB) are different.

In this thesis, first, we generalize results in [IN05] and [IKN09] to the case of

global Busemann nonpositive curvature spaces (Definition 1.1.1), whose typical

examples are Hadamard spaces and the Lebesgue spaces Lp with 1 < p < ∞.

Let G be a compactly generated group such that a compact generating subset

K has a probability measure supported on K. When G is a finitely generated

group, such a measure always exists and is called a weight. Let α be a continuous

isometric action of G on a global Busemann nonpositive curvature space N . With

α and 1 ≤ p ≤ ∞, we associate a nonnegative function Fα,p (Definition 2.1.1)

defined on N by making use of K. For a finitely generated group Γ, if we take

Γ as a countable Γ-space, then the energy Eα(f) coincides with (Fα,2(f(e)))2/2,

where f is an α-equivariant map and e is the identity element of Γ. Note that

Fα,p vanishes at x0 ∈ N if and only if x0 is a global fixed point of α.

2



To prove the existence of a global fixed point, we investigate the absolute

gradient |∇−Fα,p|(x) of Fα,p at each x ∈ N (Definition 2.2.1). It is a key feature

of |∇−Fα,p| that it gives the maximum descent of Fα,p around each point. In par-

ticular, if |∇−Fα,p| vanishes at x0 ∈ N , then x0 minimizes Fα,p (Corollary 2.2.3).

We will prove that there always exists a sequence of points such that |∇−Fα,p| ap-

proaches zero (Lemma 2.2.5). Furthermore, without using Jost-Mayer’s gradient

flow, we will obtain the following theorem.

Theorem 1. Let α be an isometric action of a compactly generated group G on a

global Busemann nonpositive curvature space N , and 1 ≤ p ≤ ∞. If there exists

C > 0 such that |∇−Fα, p|(x) ≥ C for all x ∈ N with Fα, p(x) > 0, then α has a

global fixed point.

Theorem 1 generalizes a result in [IN05]. Indeed, to prove the existence of a

global fixed point, they assume the existence of C > 0 satisfying the inequality

|∇−Eα|(f)2 ≥ CEα(f) for every α-equivariant map f . If we take Γ as a countable

Γ-space, then the space of all α-equivariant maps can be identified with the

Hadamard space Y on which Γ is acting, and this inequality is equivalent to the

inequality |∇−Fα,2|(x) ≥
√

C/2 for all x ∈ Y with Fα,2(x) > 0 (see Section 3.1).

However, our proof is totally different from the proof in [IN05].

Theorem 2. Let Γ be a finitely generated group. Fix a finite generating subset K

of Γ and a weight on K. Let L be a family of global Busemann nonpositive cur-

vature spaces, and 1 ≤ p ≤ ∞. Suppose that L is stable under scaling ultralimit.

Then the following are equivalent:

(i) For any N ∈ L, every isometric action of Γ on N has a global fixed point.

(ii) For any N ∈ L and isometric action α of Γ on N , there exists C > 0 such

that |∇−Fα, p|(x) ≥ C for all x ∈ N with Fα, p(x) > 0.

Furthermore, in (ii), C can be a constant independent of N and α.

Theorem 2 is a generalization of a result in [IKN09] and an improvement of a

result in [Tan]. An example of such a family L is the family of all Lp, where p is

a fixed number with 1 < p < ∞. Other examples will be given in Section 3.2.

Second, for an affine isometric action α of a finitely generated group Γ on a

Banach space B, we study the existence of a global fixed point. In this thesis, we

will introduce a new property defined in terms of |∇−Fα,p|, and will investigate

relations between Property (FB), Property (TB) and the new one. To describe

the new property, we briefly recall the definition of affine isometric actions. An

isometric action α of Γ on B is said to be affine if it is written as α(γ)v =
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π(γ)v+c(γ) for each v ∈ B and γ ∈ Γ, where π is a linear isometric representation

of Γ on B and c is a π-cocycle. (We will define them in Section 2.3 in detail.) We

call π the linear part of α. An affine isometric action α of Γ on B with a linear

part π descends to an affine isometric action α′ of Γ on B′ := B/Bπ(Γ), where

Bπ(Γ) is the closed subspace of all invariant vectors of π. Let 1 < p < ∞. We

say Γ has Property (AGB, p), if, for any affine isometric action α of Γ on B, there

exists C > 0 such that |∇−Fα′, p|(v′) ≥ C for all v′ ∈ B′ with Fα′, p(v
′) > 0. It

is known that, for an infinite dimensional Hilbert space H, Property (AGH,2) is

equivalent to Property (FH). In the case of Banach spaces, we will obtain the

following theorem.

Theorem 3. If Γ has Property (FB), then it has Property (AGB, p) for all 1 <

p < ∞.

It should be remarked that the converse of Theorem 3 is false. Indeed, Z has

Property (AGR, p) but does not satisfy Property (FR) (see Section 4.3). However,

we will obtain Theorem 4 below. Note that, for a linear isometric representation

π of Γ on B having no non-trivial invariant vector, the first cohomology H1(Γ, π)

vanishes if and only if every affine isometric action with linear part π has a global

fixed point.

Theorem 4. Let π be a linear isometric representation of Γ on B, and 1 ≤ p ≤
∞. Suppose that B is strictly convex and π has no non-trivial invariant vector.

Then the following are equivalent:

(i) The first cohomology H1(Γ, π) vanishes.

(ii) For any affine isometric action α of Γ on B with the linear part π, there

exists C > 0 such that |∇−Fα, p|(v) ≥ C for all v ∈ B with Fα, p(v) > 0.

Furthermore, in (ii), C can be a constant independent of α.

Although strictly convex Banach spaces are global Busemann nonpositive cur-

vature spaces, this theorem is not a corollary of Theorem 2, since the family con-

sisting of one separable Banach space is not stable under scaling ultralimit (see

Section 1.2). Also, we can not use Theorem 4 to prove Theorem 3, because some

affine isometric action on B′ may not extend to B.

For an affine isometric action α of Γ on B, |∇−Fα,p| with 1 < p < ∞ can be

written explicitly in the following case. We choose a finite generating subset K of

Γ and a weight m on K to define Fα,p. Suppose that B is either strictly convex,

smooth and real, or uniformly convex and uniformly smooth. Besides, suppose

that K is symmetric and m is symmetric. Let j(u) denote the support functional
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of a non-trivial u ∈ B, that is, the continuous linear functional on B satisfying

j(u)u = ‖u‖ and ‖j(u)‖B∗ = 1. For the trivial vector 0 ∈ B, we set j(0) to be

the zero functional on B. Then |∇−Fα,p|(v) is expressed as

2

Fα,p(v)p−1

∥∥∥∥∥∑
γ∈K

‖v − α(γ)v‖p−1m(γ) Re j(v − α(γ)v)

∥∥∥∥∥
B∗

for all v ∈ B with Fα,p(v) > 0. Here, for g ∈ B∗, Re g denotes the real-valued

part of g. If B is real, Re is trivial. In particular, if B is Lp(W, ν), where (W, ν)

is a measure space, then |∇−Fα,p|(f) is expressed as 2‖G‖Lq(ν)/Fα,p(f)p−1 for

f ∈ Lp(W, ν) with Fα,p(f) > 0. Here q is the conjugate exponent of p, that is,

q = p/(p − 1), and

G(x) =
∑
γ∈K

|f(x) − α(γ)f(x)|p−2 Re(f(x) − α(γ)f(x))m(γ)

for all x ∈ W , where Re(a) denotes the real part of a complex number a, and

|f(x) − α(γ)f(x)|p−2 is defined to be zero if f(x) = α(γ)f(x) and p < 2.

By making use of explicit expression of |∇−Fα,p|, we will obtain the following

corollary of Theorem 4.

Corollary. Let π be a linear isometric representation of Γ on B and 1 < p < ∞.

Suppose that B is either strictly convex, smooth and real, or uniformly convex

and uniformly smooth, and π has no non-trivial invariant vector. Then H1(Γ, π)

vanishes if and only if there exists C > 0 such that∥∥∥∥∥∑
γ∈K

m(γ)‖c(γ)‖p−1 Re j(c(γ))

∥∥∥∥∥
B∗

≥ C‖c‖p−1
p

for all π-cocycles c.

In Section 4.2, for a finitely generated group Γ, we will apply this corollary to

the left regular representation λΓ, p of Γ on `p(Γ) with 1 < p < ∞. Then, using

the p-Laplacian on the Cayley graph of Γ, we will state a necessary and sufficient

condition for the vanishing of H1(Γ, λΓ, p).

On the other hand, one may expect that there is also some relation between

Property (TB) and Property (AGB,p). We can show the following proposition.

Proposition 5. Suppose that Γ is Abelian, K is symmetric, m is symmetric, and

B is uniformly convex, uniformly smooth and real. If Γ has Property (TB), then

it has Property (AGB, p) for all 1 < p < ∞.
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Finally, we will generalize a result in [Żuk03] mentioned above to the case of

uniformly convex and uniformly smooth real Banach spaces. Let Γ be a finitely

generated group. Given a symmetric finite generating subset K of Γ, not contain-

ing e, we will construct a connected finite oriented graph L(K) which is the same

graph as the one constructed in [Żuk03]. For a uniformly convex and uniformly

smooth real Banach space B and 1 < p < ∞, we will introduce an invariant

λB,p(L(K)) (Definition 5.2.3). Then we will prove the following

Theorem 6. If λB/B̃, p(L(K)) > 1/2 for every closed subspace B̃ of B, then Γ

has Property (TB).

Note that λB/B̃,p(L(K)) is independent of the linear isometric representations

of Γ. For a Hilbert space H, λH,2(L(K)) is the smallest non-zero eigenvalue of the

discrete Laplacian acting on l2(L(K), deg). In this case, our theorem coincides

with Żuk’s original one, and there exists a finitely generated group such that

λH,2(L(K)) can be computed easily. However, in the case of Banach spaces,

the computation of λB/B̃,2(L(K)) is not easy. Indeed, although B is a Lebesgue

space, B/B̃ may not be a Lebesgue space.

This thesis is organized as follows. In Chapter 1, we review relevant definitions

and properties of global Busemann nonpositive curvature spaces, the ultralimit

of a sequence of metric spaces, strictly convex and smooth Banach spaces, and

uniformly convex and uniformly smooth Banach spaces. In Chapter 2, we define

Fα,p and |∇−Fα,p|, and describe their basic properties. Moreover, we review the

definition of the first cohomology, and give an explicit expression of |∇−Fα,p| for

an affine isometric action α. In Chapter 3, we prove Theorem 1 and Theorem

2, and give examples of families satisfying the assumption of Theorem 2. In

Chapter 4, we review the definitions of properties (FB), (TB) and (AGB,p), and

prove Theorem 3, Theorem 4 and Proposition 5. In Chapter 5, we generalize a

result of Żuk, that is, prove Theorem 6.
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Chapter 1

Metric spaces

In this chapter, we briefly review main geometric objects studied in this the-

sis, namely, global Busemann nonpositive curvature spaces, the ultralimit of a

sequence of metric spaces, strictly convex and smooth Banach spaces, and uni-

formly convex and uniformly smooth Banach spaces. We also recall some basic

facts which will be used throughout the thesis.

1.1 Global Busemann NPC spaces

We first recall the definition and several properties of global Busemann nonpos-

itive curvature spaces. The notion of a global Busemann nonpositive curvature

space was introduced by Busemann [Bus55]. Most of results in this section can

be found in [Jos97] and [Pap05].

Given a pair of points x and y in a metric space (M,d), a shortest geodesic

joining x to y is a map c : [0, l] → M which satisfies c(0) = x, c(l) = y and

d(c(t), c(s)) = |t − s| for all t, s ∈ [0, l]. Note that l = d(x, y). A metric space

is called a geodesic space if every pair of points has a shortest geodesic joining

them.

Definition 1.1.1. A complete geodesic space (N, d) is called a global Busemann

nonpositive curvature space (or shortly a global Busemann NPC space) if the

Busemann NPC inequality

d

(
c1

(
l1
2

)
, c2

(
l2
2

))
≤ 1

2
d(c1(l1), c2(l2))

holds for every pair of shortest geodesics ci : [0, li] → N (i = 1, 2) satisfying

c1(0) = c2(0).

7



Example 1.1.2. Hadamard spaces are global Busemann NPC spaces. In particu-

lar, simply connected complete Riemannian manifolds with nonpositive sectional

curvature, trees, Bruhat-Tits buildings, and Hilbert spaces are global Busemann

NPC spaces. Strictly convex Banach spaces, which will be defined in Section 1.3,

are also global Busemann NPC spaces.

A Lebesgue space Lp with p 6= 2 is not a Hadamard space, but Lp with

1 < p < ∞ is a global Busemann NPC space. A difference between Hadamard

spaces and global Busemann NPC spaces may be typically seen in that between

Hilbert spaces and strictly convex Banach spaces.

For a global Busemann NPC space (N, d), the metric is convex in the following

sense.

Theorem 1.1.3 (cf. [Jos97]). Let c0 : [0, l0] → N and c1 : [0, l1] → N be shortest

geodesics in (N, d). Then the function d(c0(l0t), c1(l1t)) of t is convex on [0, 1],

that is,

d(c0(tl0), c1(tl1)) ≤ (1 − t)d(c0(0), c1(0)) + td(c0(l0), c1(l1))

for all t ∈ [0, 1].

The convexity of the metric is the most important feature of global Busemann

NPC spaces.

It follows from this theorem that each pair of points in a global Busemann NPC

space is joined by precisely one shortest geodesic. Moreover, a global Busemann

NPC space (N, d) is contractible. Indeed, fix an arbitrary x0 ∈ X, and for each

x ∈ N set cx : [0, lx] → N to be the shortest geodesic joining x0 to x. Then

F : N × [0, 1] → N defined by F (x, t) := cx(tlx) for x ∈ N and t ∈ [0, 1] is

continuous in x and t, because

d(F (x, t), F (y, s)) = d(cx(tlx), cy(sly))

≤ d(cx(tlx), cx(slx)) + d(cx(slx), cy(sly))

≤ |t − s|lx + sd(x, y)

for all x, y ∈ N and t, s ∈ [0, 1] by Theorem 1.1.3. Therefore the identity map on

N and the constant map x0 are homotopic.

1.2 Ultralimit of metric spaces

Next, we recall the definition and several properties of the ultralimit of a sequence

of metric spaces. Basic references of this section are [BH99] and [Kap01]. We

denote by N the set of all natural numbers, and by R the set of all real numbers.
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Definition 1.2.1. A filter ω on N is a family of subsets of N satisfying the

following:

(i) ∅ /∈ ω and N ∈ ω, where ∅ is the empty set.

(ii) If B ∈ ω and B ⊂ A, then A ∈ ω.

(iii) If A,B ∈ ω, then A ∩ B ∈ ω.

In addition, if a filter ω satisfies that

(iv) for each A ∈ N, A ∈ ω or Ac ∈ ω,

then ω is called an ultrafilter, where Ac is the complement of A. On the other

hand, if a filter ω satisfies that

(v) no finite subset of N is not in ω,

then ω is said to be non-principal.

An example of a non-principal ultrafilter on N can be given as follows: We

can easily see that ω′ := {Ac ⊂ N : |A| < ∞} is a non-principal filter, where |A|
is the cardinal number of A. Considering all non-principal filters containing ω′,

we obtain a maximal one ω0 by Zorn’s Lemma. This ω0 must be a non-principal

ultrafilter. Suppose not. Then there exists A ⊂ N such that A /∈ ω0 and Ac /∈ ω0.

Then

ω1 := ω0 ∪ {C ⊂ N : A ∩ B ⊂ C for some B ∈ ω0}

is also a non-principal filter. Indeed, we have the following: (i) N ∈ ω1. If

∅ ∈ ω1, then there exists B ∈ ω0 such that A ∩ B = ∅, that is, B ⊂ Ac. Thus

Ac ∈ ω0. This is a contradiction, that is, ∅ /∈ ω1. (ii) If C ∈ ω1 and C ⊂ D,

then there exists B ∈ ω0 such that A ∩ B ⊂ D. Hence D ∈ ω1. (iii) Since, for

C1, C2 ∈ ω1, there exists B1, B2 ∈ ω0 such that A ∩ B1 ⊂ C1 and A ∩ B2 ⊂ C2,

we have A ∩ B1 ∩ B2 ⊂ C1 ∩ C2. Because A ∩ B1 ∩ B2 ∈ ω1, C1 ∩ C2 ∈ ω1. (v)

If there exists E ∈ ω1 such that |E| < ∞, then there exists B ∈ ω0 such that

|A ∩ B| < ∞. Since (A ∩ B)c ∈ ω0, we get B ∩ (A ∩ B)c = B ∩ Ac ∈ ω0. Thus

Ac ∈ ω0. This is a contradiction, that is, no finite subset is in ω1. Therefore

ω1 is a non-principal filter. Since A ∈ ω1, ω0 is properly contained in ω1. This

contradicts the assumption that ω0 is maximal. Therefore ω0 is a non-principal

ultrafilter.

Throughout this section, let ω be a non-principal ultrafilter on N.

For a bounded sequence {an} ⊂ R, there exists a unique real number l such

that {n : |an− l| < ε} ∈ ω for all ε > 0 (see [BH99, Lemma 5.49]). We denote this
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l by aω or ω-limn an, and call it the ultralimit of {an}. If a sequence {an} ⊂ R
converges to a0 in the usual sense, then aω = a0. Thus we can regard the ultralimit

of a bounded sequence of real numbers as a limit of the sequence in some sense.

Lemma 1.2.2. Ultralimit ω-lim is linear, that is, ω-limn(an + bn) = aω + bω and

ω-limn(ran) = raω for all bounded sequences {an}, {bn} ⊂ R and r ∈ R.

Proof. For ε > 0, we have

{n : |an − aω| < ε/2, |bn − bω| < ε/2} ⊂ {n : |(an + bn) − (aω + bω)| < ε}.

Using (ii) and (iii) in Definition 1.2.1, we obtain ω-limn(an+bn) = aω+bω. On the

other hand, if r ≥ 0, then {n : |ran − raω| < ε} = {n : |an − aω| < ε/|r|} ∈ ω for

ε > 0. Hence we get ω-limn(ran) = raω. If r = 0, then obviously ω-limn(ran) =

raω.

Lemma 1.2.3. If a pair of bounded sequences {an}, {bn} ⊂ R satisfies an ≤ bn

for each n ∈ N, then aω ≤ bω.

Proof. If n ∈ N satisfies |an − aω| < ε for ε > 0, then an ∈ (aω − ε,∞). From the

assumption, bn ∈ (aω − ε,∞). Thus

{n : |an − aω| < ε, |bn − bω| < ε} ⊂ {n : bn ∈ (aω − ε,∞) ∩ (bω − ε, bω + ε)}.

It follows from (i), (ii) and (iii) in Definition 1.2.1 that (aω−ε,∞)∩(bω−ε, bω+ε) 6=
∅ for all ε > 0. Therefore we have aω ≤ bω.

Lemma 1.2.4. For any r > 0, every bounded sequence {an} such that an ≥ 0

for all n ∈ N satisfies ar
ω = ω-limn(ar

n).

Proof. Since an ≥ 0, we have aω ≥ 0 by the definition of the ultralimit. If aω = 0,

then {n : ar
n < ε} = {n : an < ε1/r} ∈ ω for any ε > 0. Hence ω-limn(ar

n) = 0.

Suppose aω > 0. If r = 1, then the lemma is obvious. In the case that 0 < r < 1,

we use an inequality in [HLP52, (2.15.2)]: ar − br ≤ rbr−1(a− b) for a, b > 0. Let

0 < ε < aω/2. If n satisfies |an − aω| < ε, then we have

ar
n − ar

ω ≤ rar−1
ω (an − aω) < r

(aω

2

)r−1

ε

and

ar
ω − ar

n ≤ rar−1
n (aω − an) < r(aω − ε)r−1ε < r

(aω

2

)r−1

ε.

These inequalities imply

{n : |an − aω| < ε} ⊂
{

n : |ar
n − ar

ω| < r
(aω

2

)r−1

ε

}
.
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Using (ii) in Definition 1.2.1, {n : |ar
n − ar

ω| < r(aω/2)r−1ε} ∈ ω for all ε > 0.

Hence ar
ω = ω-limn(ar

n). In the case that r > 1, we use an inequality in [HLP52,

(2.15.1)]: ar − br ≤ rar−1(a − b) for a, b > 0. Let 0 < ε < aω. If n satisfies

|an − aω| < ε, then we obtain

ar
n − ar

ω ≤ rar−1
n (an − aω) < r(aω + ε)r−1ε < r(2aω)r−1ε

and

ar
ω − ar

n ≤ rar−1
ω (aω − an) < r(2aω)r−1ε.

As the case that 0 < r < 1, these inequalities imply ar
ω = ω-limn(ar

n).

Lemma 1.2.5. Let S be a finite set. For each i ∈ S, take an arbitrary bounded

sequence {ai
n} ⊂ R. Then maxi∈S ai

ω = ω-limn(maxi∈S ai
n).

Proof. Set bn to be maxi∈S ai
n for each n. Due to Lemma 1.2.3, we have ai

ω ≤ bω

for all i ∈ S. Hence maxi∈S ai
ω ≤ bω. We must prove maxi∈S ai

ω ≥ bω. Suppose

not. Take i0 ∈ S satisfying ai0
ω = maxi∈S ai

ω, and set ε = (bω − ai0
ω )/2. If

{n : |bω−ai
n| < ε} ∈ ω for i ∈ S, then we have ai0

ω < bω−ε ≤ ai
ω. This contradicts

the assumption that ai0
ω is maximal. Hence {n : |bω − ai

n| ≥ ε} ∈ ω for all i ∈ S.

By (iii) in Definition 1.2.1, ∩i∈S{n : |bω − ai
n| ≥ ε} ∈ ω. Note that if A ∈ ω, then

Ac /∈ ω from (i) and (iii) in Definition 1.2.1. Hence, by (iv) in Definition 1.2.1,

∪i∈S{n : |bω−ai
n| < ε} /∈ ω. However, {n : |bω−bn| < ε} ⊂ ∪i∈S{n : |bω−ai

n| < ε},
and the right hand side is in ω. This contradicts (ii) in Definition 1.2.1.

A pair of a metric space and a point in the metric space is called a metric

space with a base point.

Definition 1.2.6. Let {(Mn, dn, on)} be a sequence of metric spaces with base

points. We denote by M∞ the set of all (xn) ∈
∏

n∈N Mn such that {dn(xn, on)}
is bounded independently of n. We say that (xn) ∈ M∞ and (yn) ∈ M∞ are

equivalent if ω-limn dn(xn, yn) = 0. We denote by xω or ω-limn xn the equivalence

class of (xn), and by Mω the set of all equivalence classes. We endow Mω with

the metric dω(xω, yω) := ω-limn dn(xn, yn) for each xω, yω ∈ Mω, where (xn) and

(yn) are representatives of xω and yω respectively. The metric space (Mω, dω)

is called the ultralimit of {(Mn, dn, on)} with respect to ω, and also written as

ω-limn(Mn, dn, on).

Note that the ultralimit of a sequence of metric spaces is complete (see [BH99],

Lemma 5.53]).

Let (M,d, o) be a proper metric space with a base point. Here proper means

that any bounded closed set is compact. Set (Mn, dn, on) = (M,d, o) for all n.

Then (Mω, dω) and (M,d) are isometric (see [BH99, Remark 5.55]).
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The ultralimit of a sequence of Banach spaces with base points becomes a

Banach space (see [Hei80]), and the ultralimit is independent of the base points.

Hence, if a Banach space (B, ‖ ‖) is finite dimensional, then the ultralimit of

{(Bn, ‖ ‖n, on)} such that (Bn, ‖ ‖n) = (B, ‖ ‖) for all n is isometrically isomorphic

to (B, ‖ ‖). However, if (B, ‖ ‖) is infinite dimensional, then ω-limn(Bn, ‖ ‖n, on)

may not be isometrically isomorphic to (B, ‖ ‖). Indeed, suppose (B, ‖ ‖) is

separable, and on is the origin of B for each n. Then ω-limn(Bn, ‖ ‖n, on) is not

separable, because of the following: We can take {vn} ⊂ B such that ‖vn−vm‖ >

1/2 and ‖vn‖ = 1 for all n and m with n 6= m. For l ∈ R, we define [l] as

n ∈ N with n ≤ l < n + 1. If b > a > 0, then there exists n0 ∈ N such that

[ka] < [kb] for all k ≥ n0. Hence ω-limk ‖v[ka] − v[kb]‖ ≥ 1/2 and ω-limk ‖v[ka]‖ =

ω-limk ‖v[kb]‖ = 1. Thus |{ω-limk v[ka] ∈ Bω : a > 0}| is continuous, and the open

balls B(ω-limk v[ka], 1/4) are mutually disjoint. Therefore ω-limn(Bn, ‖ ‖n, on) is

not separable.

The ultralimit of a sequence of geodesic spaces is a geodesic space (see [BH99,

Exercise 5.54]). However, the ultralimit of a sequence of global Busemann NPC

spaces may not be a global Busemann NPC space. For example, (R2, ‖ ‖p)

with 1 < p < ∞ is a global Busemann NPC space, where ‖ ‖p is defined by

‖u‖p := (|u1|p + |u2|p)1/p for each u = (u1, u2) ∈ R2. However, (R2, ‖ ‖ω) =

ω-limn(R2, ‖ ‖n, o) is not a global Busemann NPC space, where o is the origin of

R2. Indeed, u = (1, 0), v = (2, 0), and w = (0, 1) in R2 satisfy

‖u − v‖n = (|u1 − v1|n + |u2 − v2|n)1/n = 1,

‖u − w‖n = (|u1 − w1|n + |u2 − w2|n)1/n = 21/n,

‖v − w‖n = (|v1 − w1|n + |v2 − w2|n)1/n = (2n + 1)1/n,∥∥∥∥u − v + w

2

∥∥∥∥
n

=

(∣∣∣∣u1 − v1 + w1

2

∣∣∣∣n +

∣∣∣∣u2 − v2 + w2

2

∣∣∣∣n)1/n

=
1

2

for all n ∈ N. Set (un), (vn), (wn) ∈
∏

n∈N R2 to be un = u, vn = v, and wn = w

for all n. Then we have ‖uω − vω‖ω = 1, ‖uω − wω‖ω = 1, and ‖vω − wω‖ω = 2.

On the other hand, uω 6= (vω + wω)/2. Hence there exist two different shortest

geodesics joining vω to wω. The one is the line segment from vω to wω, because

the line segment from u to w is a shortest geodesic joining them. The other is

the path from vω through uω to wω consisting of two line segments joining vω to

uω and uω to wω, because ‖uω − vω‖ω + ‖uω − wω‖ω = ‖vω − wω‖ω. Therefore

(R2, ‖ ‖ω) is not a global Busemann NPC space.

Definition 1.2.7. A family L of metric spaces is said to be stable under scaling

ultralimit if, for any {(Mn, dn, on)} ⊂ L, {rn} ⊂ R with rn > 0 for all n, and

non-principal ultrafilter ω on N, the ultralimit ω-limn(Mn, rndn, on) is in L.
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For example, for a fixed p with 1 ≤ p < ∞, the family of all Lp is stable

under scaling ultralimit (see [AK90] and [Hei80]). In particular, the family of all

Hilbert spaces is stable under scaling ultralimit.

1.3 Strictly convex Banach spaces

Next, we review the definitions and several properties of strictly convex Banach

spaces, smooth Banach spaces, uniformly convex Banach spaces and uniformly

smooth Banach spaces. Basic references are [BL00], [LT77] and [LT79]. We

denote by (B∗, ‖ ‖B∗) the dual Banach space of a Banach space (B, ‖ ‖).

Definition 1.3.1. A Banach space (B, ‖ ‖) is said to be strictly convex if ‖v+u‖ <

2 for all v, u ∈ B with v 6= u, ‖v‖ ≤ 1 and ‖u‖ ≤ 1.

Strictly convex Banach spaces are global Busemann NPC spaces as mentioned

in Section 1.1.

A support functional at v in a Banach space (B, ‖ ‖) is f ∈ B∗ satisfying

‖f‖B∗ = 1 and f(v) = ‖v‖.

Definition 1.3.2. A Banach space is said to be smooth if every non-trivial vector

has a unique support functional.

We denote by j(v) the support functional at a non-trivial vector v in a smooth

Banach space B, and call j the duality map. For the trivial vector 0 of B, we set

j(0) to be the zero functional on B. If B is real, then

j(v)u = lim
t→0

‖v + tu‖ − ‖v‖
t

for all v ∈ B\{0} and u ∈ B. Furthermore, if B∗ is strictly convex (resp. smooth),

then B is smooth (resp. strictly convex).

Definition 1.3.3. A Banach space (B, ‖ ‖) is said to be uniformly convex if the

modulus of convexity of B

δB(ε) := inf

{
1 − ‖u + v‖

2
: ‖u‖ ≤ 1, ‖v‖ ≤ 1 and ‖u − v‖ ≥ ε

}
is positive for all ε > 0.

A uniformly convex Banach space is strictly convex obviously. The closed

subspaces and the quotient spaces of a uniformly convex Banach space are also

uniformly convex. A uniformly convex real Banach space B is reflexive, that is,

(B∗)∗ = B.
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Definition 1.3.4. A Banach space (B, ‖ ‖) is said to be uniformly smooth if the

modulus of smoothness of B

ρB(τ) := sup

{
‖u + v‖

2
+

‖u − v‖
2

− 1 : ‖u‖ ≤ 1 and ‖v‖ ≤ τ

}
satisfies that ρB(τ)/τ → 0 whenever τ ↘ 0.

A uniformly smooth Banach space B is smooth. Indeed, if B is not smooth,

then there exist v ∈ B and f, g ∈ B∗ satisfying f 6= g, ‖f‖B∗ = ‖g‖B∗ = 1 and

f(v) = g(v) = ‖v‖ = 1. Since f 6= g, there exists a non-trivial vector w such

that f(w) 6= g(w). Set w1 = w − g(w)v. Then f(w1) 6= 0 and g(w1) = 0. Set

w2 = f(w1)w1, where f(w1) is the conjugate of the complex number f(w1). Then

f(w2) is real. Retaking w2 as −w2 if necessary, we may assume that f(w2) > 0.

Set w3 = w2− (f(w2)/2)v. Then a := f(w3) = −g(w3) > 0. Hence, for any t > 0,

we have ‖v + tw3‖ ≥ f(v + tw3) = 1 + ta while ‖v − tw3‖ ≥ g(v − tw3) = 1 + ta.

Thus we obtain

ρB(τ)

τ
≥ ‖v + τw3‖

2τ
+

‖v − τw3‖
2τ

− 1

τ
≥ a > 0

for all τ > 0. Therefore B is not uniformly smooth.

If B is real, then the closed subspaces and the quotient spaces of B is also

uniformly convex, and B is reflexive. The duality map j from the unit sphere of

B into the unit sphere of B∗ is uniformly continuous with a uniformly continuous

inverse. The following proposition for the case that B is real is Proposition A.5.

in [BL00].

Proposition 1.3.5. Let B be a uniformly smooth Banach space.

‖Re j(v) − Re j(u)‖B∗ ≤ 2ρB

(
2

∥∥∥∥ v

‖v‖
− u

‖u‖

∥∥∥∥)/ ∥∥∥∥ v

‖v‖
− u

‖u‖

∥∥∥∥
for all v, u ∈ B\{0} with v 6= u. Here, for f ∈ B∗, we denote by Re f the

real-valued part of f . If B is real, then Re is trivial.

Proof. For a complex number c, we denote by Re c the real part of c. Note that

Re is linear. For u ∈ B\{0} and v ∈ B, we have

Re(j(u)v) + ‖u‖ = Re(j(u)(v + u)) ≤ |j(u)(v + u)| ≤ ‖v + u‖.

Hence Re(j(u)v) ≤ ‖u + v‖ − ‖u‖.
Fix x, y ∈ B\{0} with x 6= y. Since any u ∈ B\{0} satisfies j(u) = j(u/‖u‖),

we may assume that ‖x‖ = ‖y‖ = 1. Take an arbitrary z ∈ B with ‖z‖ = ‖x−y‖.
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Then

(Re j(y) − Re j(x))z = Re(j(y)z) − Re(j(x)z)

≤ ‖y + z‖ − ‖y‖ − Re(j(x)z) + ‖x‖ − Re(j(x)y)

= ‖y + z‖ − 1 + Re(j(x)(x − y − z))

≤ ‖y + z‖ − 1 + ‖x + (x − y − z)‖ − ‖x‖
= ‖x + (y − x + z)‖ + ‖x − (y − x + z)‖ − 2

≤ 2ρB(‖y − x + z‖)
≤ 2ρB(2‖y − x‖),

because ρB is nondecreasing and ‖y − x + z‖ ≤ 2‖y − x‖. Since z was arbitrary,

the proposition follows.

A real Banach space is uniformly smooth if and only if the dual Banach space

is uniformly convex. Hence the class of uniformly convex and uniformly smooth

real Banach spaces is closed under taking duals.

Example 1.3.6 ([Han56]). The modulus of convexity of Lp can be written as

δLp(ε) =

{
(p − 1)ε2/8 + o(ε2) if 1 < p ≤ 2

εp/p2p + o(εp) if 2 ≤ p < ∞

for ε > 0, and the modulus of smoothness of Lp can be written as

ρLp(τ) =

{
τ p/p + o(τ p) if 1 < p ≤ 2

(p − 1)τ 2/2 + o(τ 2) if 2 ≤ p < ∞

for τ > 0. In particular, for a Hilbert space H, δH(ε) = 1− (1− ε2/4)1/2 for ε > 0

and ρH(τ) = (1 + τ 2)1/2 − 1 for τ > 0.
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Chapter 2

Isometric actions

In this chapter, we investigate an isometric action α of a finitely generated (or

compactly generated) group on a global Busemann NPC space or a Banach space.

To find a global fixed point of α, we will introduce a nonnegative continuous

function Fα,p on the space which plays the most important role in this thesis,

and investigate the behavior of Fα,p using its absolute gradient.

2.1 Global fixed points

A group G is said to be a topological group if G has a topology such that the

map G × G → G, (g, g′) 7→ gg′ and the map on G, g 7→ g−1 are continuous.

For example, topological vector spaces and Lie groups are topological groups.

A topological group G is said to be compactly generated if there exists a com-

pact subset K ⊂ G such that any g ∈ G is written as g1g2 · · · gk using some

g1, g2, . . . , gk ∈ K ∪ K−1, where K−1 = {g−1 ∈ G : g ∈ K}. For instance, finite

dimensional normed linear spaces, compact Lie groups and special linear groups

SLn(R) are compactly generated groups. We call K a compact generating subset

of G. If K−1 = K, then K is said to be symmetric. For a compactly generated

group G, we can take a symmetric compact generating subset K. Indeed, for

a compact generating subset K, K ∪ K−1 is a symmetric compact generating

subset of G. Let µ be a measure on the topological σ-algebra of K, that is, the

smallest σ-algebra of K which contains all open subsets of K. We suppose that

µ is probability, that is, µ(K) = 1, and the support is K, that is, every open

neighborhood of each point in K has positive measure. We assume that every

compactly generated group in this thesis has such a measure µ. An example

of such a measure on a finite dimensional compactly generated Lie group G is

constructed as follows: The group G has a left Haar measure. The restriction of

the measure on a compact generating subset K is a measure on the topological
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σ-algebra on K. Normalizing it, we obtain a probability measure supported on

K.

A discrete group is a topological group with discrete topology. If a discrete

group is compactly generated, then it is called a finitely generated group. For

example, free groups, free Abelian groups and special linear groups SLn(Z) are

finitely generated groups. A compact generating subset of a finitely generated

group is a finite subset, hence we call it a finite generating subset. For a finite

generating subset K of a finitely generated group, a positive function m on K

satisfying
∑

γ∈K m(γ) = 1 can be regarded as a probability measure supported

on K. We call it a weight on K. Note that every probability measure supported

on a finite generating subset is identified with a certain weight on the subset. A

weight m on a symmetric finite generating subset K is said to be symmetric if

it satisfies m(γ) = m(γ−1) for all γ ∈ K. Obviously, a finite generating subset

always has a weight. We always denote by G a compactly generated group and

by Γ a finitely generated group.

Let (M,d) be a metric space. An isometry on (M,d) is a map f : M →
M such that d(f(x), f(y)) = d(x, y) for all x, y ∈ M . The composition of a

shortest geodesic and an isometry is a shortest geodesic. Hence we can say that

an isometry maps a shortest geodesic to a shortest geodesic. The isometry group

Isom(M,d) is the group consisting of all surjective isometries on (M,d). Let

α : G → Isom(M,d) be a strongly continuous homomorphism. Here strongly

continuous means that the map G → M , g 7→ α(g)(x) is continuous for each

x ∈ M . We can regard α as an isometric action of G on M , hence we call α an

isometric action. We write α(g)x as α(g)(x) for all g ∈ G and x ∈ M . We say α

has a global fixed point x0 ∈ M if α(g)x0 = x0 for all g ∈ G.

Definition 2.1.1. We define Fα,p : M → [0,∞) by

Fα,p(x) :=

(∫
g∈K

d(x, α(g)x)pdµ(g)

)1/p

for 1 ≤ p < ∞,

Fα,∞(x) := max
g∈K

d(x, α(g)x)

for each x ∈ M . In particular, for a finitely generated group, we can write

Fα,p(x) =

(∑
γ∈K

d(x, α(γ)x)pm(γ)

)1/p

for each 1 ≤ p < ∞ and x ∈ M .

For any x, y ∈ M and g ∈ G, we have

|d(x, α(g)x) − d(y, α(g)y)| ≤ d(x, y) + d(α(g)x, α(g)y) = 2d(x, y).
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Hence d(x, α(g)x) is continuous in x. Because of the definition of µ and the

continuity of d(x, α(g)x) in g, Fα,p vanishes at x0 ∈ M if and only if x0 is a global

fixed point of α. Using Minkowski’s inequality, for 1 ≤ p < ∞, we have

Fα,p(x) =

(∫
g∈K

d(x, α(g)x)pdµ(g)

)1/p

≤
(∫

g∈K

(d(x, y) + d(y, α(g)y) + d(α(g)y, α(g)x))pdµ(g)

)1/p

≤
(∫

g∈K

d(y, α(g)y)pdµ(g)

)1/p

+ 2

(∫
g∈K

d(x, y)pdµ(g)

)1/p

≤ Fα,p(y) + 2d(x, y)

for all x, y ∈ M . Hence we obtain |Fα,p(x) − Fα,p(y)| ≤ 2d(x, y), that is, Fα,p is

continuous for 1 ≤ p < ∞. We can easily show |Fα,∞(x) − Fα,∞(y)| ≤ 2d(x, y)

for x, y ∈ N , hence Fα,∞ is also continuous.

A function F on a geodesic space M is said to be convex if, for any shortest

geodesic c : [0, l] → M , F (c(tl)) ≤ (1 − t)F (c(0)) + tF (c(l)) for t ∈ [0, 1]. For

an isometric action α on a global Busemann NPC space (N, d) and a shortest

geodesic c : [0, l] → N , by Theorem 1.1.3 and Minkowski’s inequality, we have

Fα,p(c(tl))

=

(∫
K

d(c(tl), α(g)c(tl))pdµ(g)

)1/p

≤
(∫

K

((1 − t)d(c(0), α(g)c(0)) + td(c(l), α(g)c(l)))pdµ(g)

)1/p

≤
(∫

K

((1 − t)d(c(0), α(g)c(0)))pdµ(g)

)1/p

+

(∫
K

(td(c(l), α(g)c(l)))pdµ(g)

)1/p

= (1 − t)Fα,p(c(0)) + tFα,p(c(l))

for 1 ≤ p < ∞. Therefore Fα,p is convex for 1 ≤ p < ∞. The function Fα,∞ is

also convex by an easy computation.

Lemma 2.1.2. Let Γ be a finitely generated group, ω a non-principal ultrafilter

on N, and 1 ≤ p ≤ ∞. Let {(Mn, dn, on)} be a sequence of metric spaces with

base points and αn an isometric action of Γ on (Mn, dn) for each n. Suppose

that Fαn, p(on) is bounded independently of n. Then we can define an isometric

action αω of Γ on (Mω, dω) by αω(γ)xω := ω-limn(αn(γ)xn) for all γ ∈ Γ and
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xω ∈ Mω, where (xn) ∈ M∞ is a representative of xω. Moreover, Fαω , p(xω) =

ω-limn Fαn, p(xn) for all xω ∈ Mω and their representatives (xn) ∈ M∞.

Proof. Since {Fαn, p(on)} is bounded independently of n, {d(on, αn(γ)on)} is also

bounded independently of n for all γ ∈ K. Since any (xn) ∈ M∞ satisfies

dn(on, αn(γ)xn) ≤ dn(on, αn(γ)on) + dn(αn(γ)on, αn(γ)xn)

= dn(on, αn(γ)on) + dn(on, xn)

for all γ ∈ Γ, n, we have (αn(γ)xn) ∈ M∞. For xω, yω ∈ Mω, take arbitrary

representatives (xn), (yn) ∈ M∞ respectively. Then, for each γ ∈ Γ, we have

dω(αω(γ)xω, αω(γ)yω) = ω-lim
n

dn(αn(γ)xn, αn(γ)yn)

= ω-lim
n

dn(xn, yn)

= dω(xω, yω).

Hence αω(γ) is well-defined and is an isometry on (Mω, dω) for each γ ∈ Γ. For

γ1, γ2 ∈ Γ, xω ∈ Mω, and a representative (xn) ∈ M∞ of xω,

dω(αω(γ1γ2)xω, αω(γ1)αω(γ2)xω) = ω-lim
n

dn(αn(γ1γ2)xn, αn(γ1)αn(γ2)xn) = 0,

hence we get αω(γ1γ2) = αω(γ1)αω(γ2). Thus αω(γ)αω(γ−1) is the identity

mapping. Hence each αω(γ) is surjective. Moreover, αω is a homomorphism

from Γ into Isom(Mω, dω). Therefore αω is an isometric action. Since, for

each (xn) ∈ M∞, {d(xn, α(γ)xn)} is bounded independently of n, {Fαn, p(xn)}
is also bounded independently of n. In the case that 1 ≤ p < ∞, using Lemma

1.2.2 and Lemma 1.2.4, and in the case that p = ∞ using Lemma 1.2.5, we

have Fαω , p(xω) = ω-limn Fαn, p(xn) for all xω ∈ Mω and their representatives

(xn) ∈ M∞.

2.2 Absolute gradient

Throughout this section, let (M,d) be a complete geodesic space, and F a convex

nonnegative lower semicontinuous function on M . In this section, we define the

absolute gradient of F on (M,d), and show some of its properties.

Definition 2.2.1. We define the absolute gradient |∇−F | of F at x ∈ M by

|∇−F |(x) := max

{
lim sup
y→x,y∈M

F (x) − F (y)

d(x, y)
, 0

}
.
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The following Proposition 2.2.2, Corollary 2.2.3 and Proposition 2.2.4 was

proved by Mayer [May98], when (M,d) is a Hadamard space. His proofs are

valid for complete geodesic spaces.

Proposition 2.2.2 ([May98], Proposition 2.34).

|∇−F |(x) = max

{
sup

y 6=x, y∈M

F (x) − F (y)

d(x, y)
, 0

}
at all x ∈ M .

Proof. Let x be an arbitrary point in M . It suffices to show that

sup
y 6=x,y∈M

F (x) − F (y)

d(x, y)
≤ lim sup

y→x,y∈M

F (x) − F (y)

d(x, y)
.

Let y ∈ M\{x} and c : [0, l] → M be a shortest geodesic joining x to y. From the

convexity of F , we get t(F (x) − F (y)) ≤ F (x) − F (c(tl)) for all t ∈ [0, 1]. Since

td(x, y) = d(x, c(tl)), we have

F (x) − F (y)

d(x, y)
≤ lim sup

t→0

F (x) − F (c(tl))

d(x, c(tl))
.

Because we can take y arbitrarily, we obtain

sup
y 6=x,y∈M

F (x) − F (y)

d(x, y)
≤ sup

y 6=x,y∈M

(
lim sup

t→0

F (x) − F (c(tl))

d(x, c(tl))

)
≤ lim sup

y→x,y∈M

F (x) − F (y)

d(x, y)
.

We suppose that |∇−F |(x) < ∞ for all x ∈ M . Since Fα,p in Section 2.1

satisfies |Fα,p(x) − Fα,p(y)| ≤ 2d(x, y) for all x, y ∈ M , we have

|∇−Fα,p|(x) ≤ lim sup
y→x,y∈M

|Fα,p(x) − Fα,p(y)|
d(x, y)

≤ 2

for all x ∈ M . In particular, |∇−Fα,p|(x) < ∞ for all x ∈ M .

Corollary 2.2.3 ([May98], Corollary 2.35). A point x0 ∈ M minimizes F if and

only if |∇−F | vanishes at x0.

Proof. If |∇−F |(x0) = 0, by Proposition 2.2.2, we have F (x0) ≤ F (y) for all

y ∈ M . Hence x0 minimizes F . The converse is obvious.
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Proposition 2.2.4 ([May98], Proposition 2.25). The absolute gradient |∇−F | is

lower semicontinuous.

Proof. Since |∇−F | is nonnegative, it is lower semicontinuous at all x ∈ M such

that |∇−F |(x) = 0. Consider x ∈ M such that |∇−F |(x) > 0. For ε > 0 and

δ > 0 with |∇−F |(x) > δ, we can take y ∈ M such that F (x) − F (y) > δd(x, y)

and d(x, y) < ε. From the lower semicontinuity of F at x, we can take z ∈ M

such that d(x, z) < εd(x, y) and F (x) − F (z) ≤ δεd(x, y). Let c : [0, l] → M be a

shortest geodesic joining z to y. By the convexity of F , we have F (z)−F (c(tl)) ≥
t(F (z) − F (y)). Since d(z, c(tl)) = td(z, y), we get

|∇−F |(z) ≥ lim sup
t→0

F (z) − F (c(tl))

d(z, c(tl))

≥ F (z) − F (y)

d(z, y)

=
F (z) − F (x)

d(z, y)
+

F (x) − F (y)

d(z, y)

>
−δεd(x, y)

d(z, y)
+

δd(x, y)

d(z, y)
=

δ(1 − ε)d(x, y)

d(z, y)
.

Since d(z, y) ≤ d(z, x) + d(x, y) < (1 + ε)d(x, y), we obtain

δ(1 − ε)d(x, y)

d(z, y)
>

δ(1 − ε)

1 + ε
> δ(1 − 2ε).

Therefore we have |∇−F |(z) > δ(1 − 2ε) for all z ∈ M sufficiently close to x.

For the fixed δ, if z approaches x, then we can take ε smaller. Hence we ob-

tain lim infz→x |∇−F |(z) ≥ δ. Since δ with |∇−F |(x) > δ is arbitrary, we have

lim infz→x |∇−F |(z) ≥ |∇−F |(x). Therefore |∇−F | is lower semicontinuous.

Lemma 2.2.5 ([Tan]). infx∈M |∇−F |(x) = 0.

Proof. Suppose that C := infx∈M |∇−F |(x) > 0. Then

sup
y 6=x,y∈M

F (x) − F (y)

d(x, y)
≥ C

for all x ∈ M by Proposition 2.2.2. In particular, F is positive. Let x0 ∈ M and

0 < ε < 1, and set

A0 :=

{
y ∈ M\{x0} : (1 − ε)C ≤ F (x0) − F (y)

d(x0, y)

}
.

By the definition of C, we have A0 6= ∅.
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We may assume that infy∈A0 F (y) > 0. Indeed, set F ′(x) := F (x) + 1 for all

x ∈ M . Then F ′ is nonnegative and lower semicontinuous. Since, for any shortest

geodesic c : [0, l] → N ,

F ′(c(tl)) ≤ (1 − t)F (c(0)) + tF (c(l)) + 1 = (1 − t)F ′(c(0)) + tF ′(c(l))

for all t ∈ [0, 1], F ′ is convex. Furthermore, |∇−F |(x) = |∇−F ′|(x) for all x ∈ N

by the definition of absolute gradient. Hence, if infy∈A0 F (y) = 0, then, replacing

F with F ′, we can assume infy∈A0 F (y) > 0.

Take x1 ∈ A0 such that F (x1) ≤ (1 + ε) infy∈A0 F (y), and set

A1 :=

{
y ∈ M\{x1} : (1 − ε)C ≤ F (x1) − F (y)

d(x1, y)

}
.

By the definition of C, we have A1 6= ∅. As F (x1) < F (x0), x0 /∈ A1. Since

x1 ∈ A0, for any y ∈ A1 we obtain

F (x0) − F (y)

d(x0, y)
≥ (F (x0) − F (x1)) + (F (x1) − F (y))

d(x0, x1) + d(x1, y)

≥ (1 − ε)Cd(x0, x1) + (1 − ε)Cd(x1, y)

d(x0, x1) + d(x1, y)

= (1 − ε)C.

Hence y ∈ A0, that is, A1 ⊂ A0. Thus infy∈A1 F (y) > 0. Inductively, for each

i ∈ N, take xi ∈ Ai−1 such that F (xi) ≤ (1 + εi) infy∈Ai−1
F (y), and set

Ai :=

{
y ∈ M\{xi} : (1 − ε)C ≤ F (xi) − F (y)

d(xi, y)

}
.

We can also show that Ai 6= ∅, Ai ⊂ Ai−1, and infy∈Ai
F (y) > 0 for each i. Thus,

for y ∈ Ai we have

d(xi, y) ≤ F (xi) − F (y)

(1 − ε)C

≤
(1 + εi) infz∈Ai−1

F (z) − infz′∈Ai
F (z′)

(1 − ε)C

≤
(1 + εi) infz∈Ai−1

F (z) − infz∈Ai−1
F (z)

(1 − ε)C

=
εi infz∈Ai−1

F (z)

(1 − ε)C
.

Since xi ∈ Ai−1 and F (xi) ≤ F (xi−1) for each i, we have

d(xi, y) ≤ εiF (xi)

(1 − ε)C
≤ εiF (x0)

(1 − ε)C
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for all y ∈ Ai. Thus for any ε′ > 0 there exists j such that

diam Ai ≤ 2
εiF (x0)

(1 − ε)C
< ε′

for all i ≥ j, where diam Ai is the diameter of Ai. Furthermore, {xi}i∈N ⊂
M satisfies d(xj, xk) ≤ diam Ai for all j, k ≥ i. Since M is complete, {xi}i∈N

converges to some x∞ ∈ M . Thus
⋂∞

i=0(Ai ∪ {xi}) is either the one-point set

{x∞} or ∅.
By the way, 1/d(xi, y) is continuous on the open set M\{xi}, and −F is upper

semicontinuous on M . Thus

F ′
i (y) :=

F (xi) − F (y)

d(xi, y)

is upper semicontinuous on M\{xi}. Hence {y ∈ M\{xi} : F ′
i (y) < r} is open

for any r > 0. Since

{y ∈ M\{xi} : F ′
i (y) < (1 − ε)C} = M\({y ∈ M : (1 − ε)C ≤ F ′

i (y)} ∪ {xi})
= M\(Ai ∪ {xi}),

Ai ∪ {xi} is closed for all i. This implies that
⋂∞

i=0(Ai ∪ {xi}) = {x∞}. However,

by the assumption that C > 0, there exists y0 ∈ M\{x∞} such that

(1 − ε)C ≤ F (x∞) − F (y0)

d(x∞, y0)
.

Since x∞ ∈ Ai+1∪{xi+1}, we get x∞ ∈ Ai for all i. Hence F (y0) < F (x∞) < F (xi)

for all i. Thus xi 6= y0 and

F (xi) − F (y0)

d(xi, y0)
≥ (F (xi) − F (x∞)) + (F (x∞) − F (y0))

d(xi, x∞) + d(x∞, y0)

≥ (1 − ε)Cd(xi, x∞) + (1 − ε)Cd(x∞, y0)

d(xi, x∞) + d(x∞, y0)

= (1 − ε)C

for all i. This implies that y0 ∈
⋂∞

i=1(Ai ∪ {xi}) = {x∞}, that is, x∞ = y0. This

contradicts the assumption that y0 ∈ M\{x∞}.

Corollary 2.2.6. There exists {yn} ⊂ M such that |∇−F |(yn) → 0 as n → ∞.

If {yn} converges to y∞ ∈ M , then y∞ minimizes F .

Proof. By Lemma 2.2.5, the existence of such a sequence {yn} ⊂ M is obvious.

If {yn} converges to y∞ ∈ M , then, by Proposition 2.2.4, we have |∇−F |(y∞) ≤
limn→∞ |∇−F |(yn) = 0. It follows from Corollary 2.2.3 that y∞ minimizes F .
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2.3 Affine isometric actions

In this section, we give the definitions of linear isometric representations and affine

isometric actions of a finitely generated group, and the first cohomology with

respect to a linear isometric representation. Furthermore, we will give explicit

expression of |∇−Fα,p| for an affine isometric action α on a strictly convex and

smooth real Banach space and a uniformly convex and uniformly smooth Banach

space. In particular, in Corollary 2.3.4, we will see that the expression of |∇−Fα,p|
matches with the affine isometric action on Lp with 1 < p < ∞.

Let Γ be a finitely generated group, K a finite generating subset of Γ, m a

weight on K, and (B, ‖ ‖) a Banach space. The orthogonal group O(B) of B is

the group of all surjective linear isometries on B. An isometry T on B is said

to be affine if it is written as Tv = Lv + u by some linear isometry L on B and

u ∈ B. If we fix the origin of B, then this decomposition is unique. The affine

isometry group Aff(B) of B is the group of all surjective affine isometries on B,

that is, Aff(B) = O(B) n B. A classical theorem of Mazur-Ulam says that every

surjective isometry on a real Banach space is affine (see [BL00]). Hence, if B is

real, Aff(B) coincides with Isom(B, ‖ ‖).
A linear isometric representation of Γ on B is a homomorphism from Γ into

O(B). For example, the left regular representation λΓ, p of Γ on `p(Γ) with respect

to the uniform measure on Γ is defined by λΓ, p(γ)f(γ′) = f(γ−1γ′) for each

f ∈ `p(Γ) and γ, γ′ ∈ Γ, it is a linear isometric representation of Γ on `p(Γ). An

affine isometric action of Γ on B is a homomorphism from Γ into Aff(B). For

a linear isometric representation π, c : Γ → B is called a π-cocycle if it satisfies

c(γγ′) = π(γ)c(γ′) + c(γ) for all γ, γ′ ∈ Γ. A cocycle is completely determined by

its values on K. An affine isometric action α has the form α(γ)v = π(γ)v + c(γ)

for each γ ∈ Γ and v ∈ B, where π is a linear isometric representation and c is

a π-cocycle. We call π the linear part of α and c the cocycle part of α, and we

write α = π + c.

Let π be a linear isometric representation of Γ on B. We denote by Z1(π) the

linear space consisting of all π-cocycles. We define a linear map d : B → Z1(π)

by dv(γ) := v − π(γ)v for each v ∈ B and γ ∈ Γ. Here, for v ∈ B,

dv(γγ′) = v−π(γγ′)v = (v−π(γ)v)+(π(γ)v−π(γ)π(γ′)v) = dv(γ)+π(γ)dv(γ′)

for all γ, γ′ ∈ Γ, hence d is well-defined. We set B1(π) := d(B), and we call an

element in B1(π) a π-coboundary. It is a linear subspace of Z1(π). If π has no

non-trivial invariant vector, then d is an isomorphism from B onto B1(π).

The space Z1(π) describes the set of all affine isometric actions of Γ on B with

the linear part π. Each π-coboundary corresponds to such an affine isometric
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action having a global fixed point. Indeed, if an affine isometric action α = π + c

fixes v ∈ B, then we have c(γ) = α(γ)v − π(γ)v = v − π(γ)v = dv(γ) for all

γ ∈ Γ. Hence c is dv. On the contrary, if c is dv, then α(γ)v = π(γ)v +dv(γ) = v

for all γ ∈ Γ. Hence v is a global fixed point of α. The first cohomology of Γ with

respect to π is H1(Γ, π) := Z1(π)/B1(π). Note that H1(Γ, π) vanishes if and only

if every affine isometric action of Γ on B with the linear part π has a global fixed

point.

We endow Z1(π) with the norm

‖c‖p :=

(∑
γ∈K

‖c(γ)‖pm(γ)

)1/p

for 1 ≤ p < ∞, or the norm

‖c‖∞ := max
γ∈K

‖c(γ)‖.

Then Z1(π) becomes a Banach space with respect to each of these norms. Note

that, in general, B1(π) is not closed in Z1(π). Since

‖dv‖p =

(∑
γ∈K

‖v − π(γ)v‖pm(γ)

)1/p

≤

(∑
γ∈K

(2‖v‖)pm(γ)

)1/p

= 2‖v‖

and ‖dv‖∞ = maxγ∈K ‖v−π(γ)v‖ ≤ 2‖v‖ for all v ∈ B, d is bounded with respect

to each of these norms. For an affine isometric action α = π + c and 1 ≤ p ≤ ∞,

Fα,p(v) coincides with ‖dv − c‖p at each v ∈ B.

Lemma 2.3.1. Let F be a convex function on B. Then we have

lim sup
u→v, u∈B

F (v) − F (u)

‖v − u‖
= sup

u∈B;‖u‖=1

lim
ε→0

F (v) − F (v + εu)

ε
.

Proof. Since F is convex, for t ≥ s > 0, we have

F (v + su) ≤
(
1 − s

t

)
F (v) +

s

t
F (v + tu).

Hence we have

F (v) − F (v + tu)

t
≤ F (v) − F (v + su)

s
.

This implies that

lim
ε→0

F (v) − F (v + εu)

ε
= sup

s>0

F (v) − F (v + su)

s
.

This completes the proof.
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Proposition 2.3.2. Suppose that K is symmetric, m is symmetric, and B is

strictly convex, smooth and real. Let α = π + c be an affine isometric action of Γ

on B, and 1 < p < ∞. For v ∈ B such that Fα, p(v) > 0, we have

|∇−Fα, p|(v)

=
1

Fα, p(v)p−1
sup

v∈B;‖u‖=1

∑
γ∈K

‖v − α(γ)v‖p−1j(v − α(γ)v)(u − π(γ)u)m(γ)

=
2

Fα, p(v)p−1

∥∥∥∥∥∑
γ∈K

‖v − α(γ)v‖p−1m(γ)j(v − α(γ)v)

∥∥∥∥∥
B∗

.

In particular, if α is linear, then |∇−Fα, p|(v) ≥ Fα, p(v)/‖v‖ for all v ∈ B\{0}.

Proof. Let v ∈ B such that Fα,p(v) > 0. Since Fα,p is convex, by Lemma 2.3.1,

we have

lim sup
u→v,u∈B

Fα,p(v) − Fα,p(u)

‖v − u‖
= sup

u∈B;‖u‖=1

lim
ε→0

Fα,p(v) − Fα,p(v + εu)

ε
.

To calculate the right hand side, we use an inequality in [HLP52, (2.15.1)]:

pbp−1(a − b) ≤ ap − bp ≤ pap−1(a − b)

for a, b > 0. Set T (γ)u := u − α(γ)u and T0(γ)u := u − π(γ)u for each γ ∈ K

and u ∈ B. Then, for a small ε > 0, we have

Fα,p(v) − Fα,p(v + εu)

ε

≤ Fα,p(v)p − Fα,p(v + εu)p

pFα,p(v + εu)p−1ε

=
∑
γ∈K

‖T (γ)v‖p − ‖T (γ)(v + εu)‖p

pFα,p(v + εu)p−1ε
m(γ)

≤
∑
γ∈K

(
‖T (γ)v‖p−1

Fα,p(v + εu)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ).

Similarly, we have

Fα,p(v) − Fα,p(v + εu)

ε

≥
∑
γ∈K

(
‖T (γ)(v + εu)‖p−1

Fα,p(v)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ).

Since B is smooth, for γ ∈ K such that T (γ)v 6= 0,

lim
ε→0

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

= lim
ε→0

‖T (γ)v‖ − ‖T (γ)v + εT0(γ)u‖
ε

= −j(T (γ)v)(T0(γ)u),
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and, for γ ∈ K such that T (γ)v = 0,

lim
ε→0

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

= lim
ε→0

−‖εT0(γ)u‖
ε

= −‖T0(γ)u‖.

Therefore, by the assumption that 1 < p < ∞, we have

lim
ε→0

∑
γ∈K

(
‖T (γ)v‖p−1

Fα,p(v + εu)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ)

= lim
ε→0

∑
γ∈K

(
‖T (γ)(v + εu)‖p−1

Fα,p(v)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ)

= −
∑
γ∈K

‖T (γ)v‖p−1

Fα,p(v)p−1
(j(T (γ)v)T0(γ)u)m(γ)

=
−1

Fα,p(v)p−1

∑
γ∈K

‖T (γ)v‖p−1(j(T (γ)v)u − j(T (γ)v)π(γ)u)m(γ).

If the last line of this equality is nonnegative, then the first equality in the propo-

sition is proved. To prove this, we continue the computation of the last line of

this equality. For arbitrary γ ∈ K, since π(γ) is a surjective linear isometry,

‖j(T (γ)v)π(γ)‖B∗ = ‖j(T (γ)v)‖B∗ = 1

and

(j(T (γ)v)π(γ)) π(γ−1)T (γ)v = ‖T (γ)v‖ = ‖π(γ−1)T (γ)v‖.

Due to the smoothness of B, these equalities imply that j(T (γ)v)π(γ) coincides

with j(π(γ−1)T (γ)v). Since c(e) = c(ee) = π(e)c(e)+c(e) = 2c(e) for the identity

element e of Γ, c(e) is trivial. Hence we have π(γ−1)c(γ) + c(γ−1) = c(γ−1γ) = 0

for all γ, γ′ ∈ Γ. Since

π(γ−1)T (γ)v = π(γ−1)v − π(γ−1)α(γ)v

= π(γ−1)v − π(γ−1)π(γ)v − π(γ−1)c(γ)

= π(γ−1)v − v + c(γ−1)

= −T (γ−1)v,

we get j(T (γ)v)π(γ) = j(−T (γ−1)v) = −j(T (γ−1)v). Because

‖T (γ−1)v‖ = ‖π(γ−1)T (γ)v‖ = ‖T (γ)v‖
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and m is symmetric, we have∑
γ∈K

‖T (γ)v‖p−1(j(T (γ)v)u − j(T (γ)v)π(γ)u)m(γ)

=
∑
γ∈K

‖T (γ)v‖p−1j((T (γ)v)u + j(T (γ−1)v)u)m(γ)

=
∑
γ∈K

‖T (γ)v‖p−1(j(T (γ)v)u)m(γ) +
∑
γ∈K

‖T (γ−1)v‖p−1(j(T (γ−1)v)u)m(γ−1)

= 2
∑
γ∈K

‖T (γ)v‖p−1(j(T (γ)v)u)m(γ).

Hence we obtain

lim sup
u→v,u∈B

Fα,p(v) − Fα,p(u)

‖v − u‖

= sup
u∈B;‖u‖=1

2

Fα,p(v)p−1

(
−

∑
γ∈K

‖T (γ)v‖p−1m(γ)j(T (γ)v)

)
u

=
2

Fα,p(v)p−1

∥∥∥∥∥∑
γ∈K

‖T (γ)v‖p−1m(γ)j(T (γ)v)

∥∥∥∥∥
B∗

.

Since the last line of the above equality is nonnegative, we have

|∇−Fα,p|(v) = lim sup
u→v,u∈B

Fα,p(v) − Fα,p(u)

‖v − u‖
.

If α is linear, then α = π. Substituting v/‖v‖ for u in

1

Fα,p(v)p−1

∑
γ∈K

‖v − α(γ)v‖p−1j(v − α(γ)v)(u − π(γ)u)m(γ),

we obtain |∇−Fα,p|(v) ≥ Fα,p(v)/‖v‖ for any v ∈ B\{0}.

Proposition 2.3.3. Suppose that K is symmetric, m is symmetric, and B is

uniformly convex and uniformly smooth. Let α = π + c be an affine isometric

action of Γ on B, and 1 < p < ∞. Then, for v ∈ B with Fα, p(v) > 0, we have

|∇−Fα, p|(v)

=
1

Fα, p(v)p−1
sup

v∈B;‖u‖=1

∑
γ∈K

‖v − α(γ)v‖p−1 Re j(v − α(γ)v)(u − π(γ)u)m(γ)

=
2

Fα, p(v)p−1

∥∥∥∥∥∑
γ∈K

‖v − α(γ)v‖p−1m(γ) Re j(v − α(γ)v)

∥∥∥∥∥
B∗

.

Here Re j(u) is the real-valued part of j(u) for u ∈ B.

29



Proof. Set T (γ)u := u − α(γ)u and T0(γ)u := u − π(γ)u for each u ∈ B and

γ ∈ K. These are continuous on B. Let v ∈ B such that Fα,p(v) > 0. As

Proposition 2.3.2, for a small ε > 0 we have

Fα,p(v) − Fα,p(v + εu)

ε

≤
∑
γ∈K

(
‖T (γ)v‖p−1

Fα,p(v + εu)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ),

and

Fα,p(v) − Fα,p(v + εu)

ε

≥
∑
γ∈K

(
‖T (γ)(v + εu)‖p−1

Fα,p(v)p−1

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

)
m(γ).

For γ ∈ K such that T (γ)v 6= 0, we get

‖T (γ)v‖ − ‖T (γ)(v + εu)‖ ≤ Re j(T (γ)v)(T (γ)v − T (γ)(v + εu))

= −ε Re j(T (γ)v)(T0(γ)u),

and

‖T (γ)v‖ − ‖T (γ)(v + εu)‖ ≥ Re j(T (γ)(v + εu))(T (γ)v − T (γ)(v + εu))

= −ε Re j(T (γ)(v + εu))(T0(γ)u).

Since T (γ) is continuous, T (γ)(v + εu) converges to T (γ)v as ε → 0. Because

T (γ)(v + εu) = T (γ)v + εT0(γ)u, we have∥∥∥∥ T (γ)(v + εu)

‖T (γ)(v + εu)‖
− T (γ)v

‖T (γ)v‖

∥∥∥∥
=

∥∥∥∥T (γ)v + εT0(γ)u

‖T (γ)(v + εu)‖
− T (γ)v

‖T (γ)(v + εu)‖
‖T (γ)(v + εu)‖

‖T (γ)v‖

∥∥∥∥
=

∥∥∥∥(
1 − ‖T (γ)(v + εu)‖

‖T (γ)v‖

)
T (γ)v

‖T (γ)(v + εu)‖
+ ε

T0(γ)u

‖T (γ)(v + εu)‖

∥∥∥∥ .

Hence, by Proposition 1.3.5, Re j(T (γ)(v + εu)) converges to Re j(T (γ)v) in B∗

as ε → 0. On the other hand, for γ ∈ K such that T (γ)v = 0, we have

‖T (γ)v‖ − ‖T (γ)(v + εu)‖
ε

=
−‖εT0(γ)u‖

ε
= −‖T0(γ)u‖.

Hence we have

lim
ε→0

Fα,p(v) − Fα,p(v + εu)

ε
= −

∑
γ∈K

(
‖T (γ)v‖p−1

Fα,p(v)p−1
Re j(T (γ)v)(T0(γ)u)

)
m(γ).

Therefore, as in the proof of Proposition 2.3.2, the proposition follows.
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Corollary 2.3.4. Let 1 < p < ∞ and α be an affine isometric action of Γ

on Lp(W, ν), where (W, ν) is a measure space. For any f ∈ Lp(W, ν) such that

Fα, p(f) > 0, we have |∇−Fα, p|(f) = 2‖G‖Lq(W,ν)/Fα, p(f)p−1. Here q is the con-

jugate exponent of p, that is, q = p/(p − 1), and

G(x) =
∑
γ∈K

|f(x) − α(γ)f(x)|p−2 Re(f(x) − α(γ)f(x))m(γ)

for x ∈ W , where Re(a) is the real part of a, and |f(x) − α(γ)f(x)|p−2 = 0 if

f(x) = α(γ)f(x) and p < 2.

Proof. For f ∈ Lp(W, ν), we have j(f) = |f |p−2f̄/‖f‖p−1
Lp(W,ν), where f̄ is the

complex conjugation of f . Indeed, we have∫
W

(
|f(x)|p−2f̄(x)

‖f‖p−1
Lp(W,ν)

)
f(x)dν(x) =

∫
W

|f(x)|p

‖f‖p−1
Lp(W,ν)

dν(x) =
‖f‖p

Lp(W,ν)

‖f‖p−1
Lp(W,ν)

= ‖f‖Lp(W,ν)

and∫
W

∣∣∣∣∣ |f(x)|p−2f̄(x)

‖f‖p−1
Lp(W,ν)

∣∣∣∣∣
q

dν(x) =

∫
W

|f(x)|(p−1)q

‖f‖(p−1)q
Lp(W,ν)

dν(x) =

∫
W

|f(x)|p

‖f‖p
Lp(W,ν)

dν(x) = 1.

We have thus proved the corollary.
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Chapter 3

A fixed-point property for global

Busemann NPC spaces

In this chapter, we will prove Theorem 1 and Theorem 2. These theorems say that

the existence of a global fixed point of isometric action α on a global Busemann

NPC space can be detected by the values of |∇−Fα,p|. These theorems generalize

results in [IN05] and [IKN09] for isometric actions on Hadamard spaces. Also,

we will give some examples of families satisfying the assumption of Theorem 2.

3.1 Proof of Theorem 1 and Theorem 2

Theorem 1. Let G be a compactly generated group, (N, d) a global Busemann

NPC space, and 1 ≤ p ≤ ∞. For an isometric action α of G on (N, d), if there

exists C > 0 such that |∇−Fα, p|(x) ≥ C for all x ∈ N with Fα, p(x) > 0, then α

has a global fixed point.

Proof. Since Fα,p is continuous and convex, infx∈N |∇−Fα,p|(x) = 0 by Lemma

2.2.5. Hence, by the assumption of the theorem, there exists x0 ∈ N with

Fα,p(x0) = 0. The point x0 is a global fixed point of α.

As mentioned in Introduction, in [IN05], to investigate the existence of a global

fixed point of an isometric action α of a finitely generated group Γ on a Hadamard

space Y , they used the energy functional Eα on the set Z of all α-equivariant maps

from a countable Γ-space X equipped with an admissible weight into Y . If X is

Γ, then Z can be identified with Y , and Eα(x) =
∑

γ∈K d(x, α(γ)x)2m(γ)/2 =

Fα,2(x)2/2 for each x ∈ Y . To see the existence of a global fixed point of α, they

assume that there exists C > 0 such that |∇−Eα|(x)2 ≥ CEα(x) for all x ∈ Y .

The inequality |∇−Eα|(x)2 ≥ CEα(x) for all x ∈ Y is equivalent to the inequality
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|∇−Fα,2|(x) ≥
√

C/2 for all x ∈ Y such that Fα,p(x) > 0. Indeed,

Eα(x) − Eα(y)

d(x, y)
=

(Fα,2(x))2 − (Fα,2(y))2

2d(x, y)

=
Fα,2(x) − Fα,2(y)

2d(x, y)
(Fα,2(x) + Fα,2(y))

for all x, y ∈ Y with x 6= y. Hence we obtain

|∇−Eα|(x) = max

{
lim sup
y→x,y∈M

Eα(x) − Eα(y)

d(x, y)
, 0

}
= max

{
Fα,2(x) lim sup

y→x,y∈M

Fα,2(x) − Fα,2(y)

d(x, y)
, 0

}
= Fα,2(x)|∇−Fα,2|(x)

for all x ∈ Y . Hence their assumption is equivalent to the one in Theorem 1.

Therefore Theorem 1 should be regarded as a generalization of a result in [IN05].

In the same spirit, using Propositions 2.3.2 and 2.3.3, for an affine isometric

action α of Γ on a strictly convex, smooth, and real or uniformly convex and

uniformly smooth Banach space B, the assumption that |∇−Fα,p|(v) ≥ C for all

v ∈ B with Fα,p(v) > 0 can be replaced with the following:∥∥∥∥∥∑
γ∈K

‖v − α(γ)v‖p−1m(γ) Re j(v − α(γ)v)

∥∥∥∥∥
B∗

≥ C

2
Fα,p(v)p−1

for all v ∈ B.

Theorem 2. Let Γ be a finitely generated group. Fix a finite generating subset

K and a weight on K. Let L a family of global Busemann NPC spaces, and

1 ≤ p ≤ ∞. Suppose L is stable under scaling ultralimit. Then the following are

equivalent:

(i) For any (N, d) ∈ L, every isometric action of Γ on (N, d) has a global fixed

point.

(ii) For any (N, d) ∈ L and isometric action α of Γ on (N, d), there exists

C > 0 such that |∇−Fα, p|(x) ≥ C for all x ∈ N with Fα, p(x) > 0.

Furthermore, in (ii), C can be a constant independent of (N, d) and α.

Proof. Because of Theorem 1, (ii) implies (i). We assume (i). To show that

(ii) is true and that C is independent of (N, d) and α, we assume the contrary,
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and deduce a contradiction. By the assumption, we have {(Nn, dn)} ⊂ L, iso-

metric actions αn of Γ on (Nn, dn), and xn ∈ Nn such that Fαn, p(xn) > 0 and

|∇−Fαn, p|(xn) < 1/n for each n. Set

(N ′
n, d′

n, x
′
n) = (Nn, dn/Fαn, p(xn), xn)

for each n. Then we can regard αn as an isometric action of Γ on (N ′
n, d′

n) for

each n, and we denote it by α′
n. By the definitions of Fα′

n, p and |∇−Fα′
n, p|, we

have Fα′
n, p(x

′
n) = 1 and |∇−Fα′

n, p|(x′
n) = |∇−Fαn, p|(xn). Owing to the assumption,

there exists y′
n ∈ N ′

n with Fα′
n, p(y

′
n) = 0 for each n. Therefore Corollary 2.2.3

implies that |∇−Fα′
n, p|(x′

n) > 0. Since {Fα′
n, p(x

′
n)} is uniformly bounded inde-

pendently of n, we can define α′
ω of {α′

n} and we have Fα′
ω , p(x

′
ω) = 1 by Lemma

2.1.2. We will show that x′
ω minimizes Fα′

ω , p. We take an arbitrary y ∈ Nω,

and let (yn) ∈ N∞ be a representative of y. Then there exists Ĉ > 0 such that

{d(x′
n, yn)} is bounded by Ĉ independently of n. By Proposition 2.2.2, we have

|∇−Fα′
n, p|(x′

n) ≥
Fα′

n, p(x
′
n) − Fα′

n, p(yn)

dn(x′
n, yn)

for each n. By the assumption, we get

Fα′
n, p(x

′
n) − Fα′

n, p(yn) ≤ dn(x′
n, yn)|∇−Fα′

n, p|(x′
n) <

Ĉ

n
.

By Lemma 2.1.2, we have

Fα′
ω , p(x

′
ω) − Fα′

ω , p(y) = ω-lim
n

(Fα′
n, p(x

′
n) − Fα′

n, p(yn)) ≤ 0.

Therefore Fα′
ω , p(x

′
ω) ≤ Fα′

ω , p(y) for all y ∈ Nω. This means that x′
ω minimizes

Fα′
ω , p. However, x′

ω is not a global fixed point, because Fα′
ω , p(x

′
ω) = 1. This

contradicts (i).

3.2 Examples

Next, we give some examples of a family of global Busemann NPC spaces which

is stable under scaling ultralimit.

For a fixed p with 1 < p < ∞, the family of all Lp is an example of such

a family (see [AK90, II Theorem 2.9] and [Hei80]). In particular, the family of

all Hilbert spaces is also an example of such a family. The following are also

examples of such a family.

Example 3.2.1. Let δ : (0, 2] → (0, 1] be a left continuous, monotone increasing

function. Let Lδ be the family consisting of all Banach spaces B such that
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δB(ε) ≥ δ(ε). Then Lδ is a family of global Busemann NPC spaces which is

stable under scaling ultralimit, as we explain below. First note that B ∈ Lδ

is uniformly convex, hence B is a global Busemann NPC space. Let ω be a

non-principal ultrafilter, {(Bn, ‖ ‖n, on)} ⊂ Lδ and {rn} ⊂ R with rn > 0. Set

(Bω, ‖ ‖′ω) := ω-limn(Bn, rn‖ ‖n, on). For 0 < ε ≤ 2, we take u, v ∈ Bω with

‖u‖′ω = ‖v‖′ω = 1 and ‖u − v‖′ω ≥ ε. For representatives (un) of u and (vn) of v

and 0 < η < ε, if |rn‖un − vn‖n − ‖u − v‖′ω| < η, then we have rn‖un − vn‖n >

‖u − v‖′ω − η ≥ ε − η. Hence

{n ∈ N : | rn‖un‖n − 1| < η, | rn‖vn‖n − 1| < η, rn‖un − vn‖n > ε − η} ∈ ω.

This set is contained in{
n ∈ N :

rn‖un‖n

1 + η
< 1,

rn‖vn‖n

1 + η
< 1,

rn‖un − vn‖n

1 + η
>

ε − η

1 + η

}
.

Therefore, by the uniform convexity and the assumption on the modulus of con-

vexity, {
n ∈ N :

rn‖un + vn‖n

2(1 + η)
≤ 1 − δ

(
ε − η

1 + η

)}
∈ ω.

Since η is arbitrary, we have

‖u + v‖′ω
2

≤ inf
0<η<ε

(1 + η)

(
1 − δ

(
ε − η

1 + η

))
= 1 − δ(ε),

that is, δBω(ε) ≥ δ(ε) for 0 < ε ≤ 2.

Example 3.2.2. We fix k > 0. Let Lk be the family of all global Busemann

NPC spaces (N, rd), where r > 0 and (N, d) is a global Busemann NPC space

with the following condition: For any x ∈ N and shortest geodesic c : [0, l] → N ,

kd(x, c(tl))2 ≤ (1 − t)d(x, c(0))2 + td(x, c(l))2 − (1 − t)td(c(0), c(l))2

for 0 ≤ t ≤ 1. Then Lk is stable under scaling ultralimit. In particular, L1

consists of all Hadamard spaces.

The reason why Lk is stable under scaling ultralimit is the following: Let

ω be a non-principal ultrafilter. By the definition of Lk, we need only to show

that for {(Nn, dn, on)} ⊂ Lk, (Nω, dω) = ω-limn(Nn, dn, on) ∈ Lk. Take arbitrary

x, y ∈ Nω and their representatives (xn), (yn) ∈ N∞ respectively. For each n, we

take a shortest geodesic cn : [0, ln] → Nn joining xn to yn, then cω : [0, lω] → Nω

defined by cω(t) := ω-limn cn(tln/lω) is a shortest geodesic joining x to y, and

lω = dω(x, y). Assume there exists another shortest geodesic c̃ : [0, l] → Nω
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joining x to y, where l = lω. Let (c̃n(t)) be an arbitrary representative of c̃(t) for

each t ∈ [0, l]. By the definition of Lk, for each n we have

kdn(c̃n(tl), cn(tln))2

≤ (1 − t)dn(c̃n(tl), cn(0))2 + tdn(c̃n(tl), cn(ln))2 − (1 − t)tdn(cn(0), cn(ln))2

= (1 − t){dn(c̃n(tl), cn(0))2 − (tdn(cn(0), cn(ln)))2}
+t{dn(c̃n(tl), cn(ln))2 − ((1 − t)dn(cn(0), cn(ln)))2}

= (1 − t){dn(c̃n(tl), xn)2 − (tln)2} + t{dn(c̃n(tl), yn)2 − ((1 − t)ln)2}

for 0 ≤ t ≤ 1. Hence we obtain

kdω(c̃(tl), cω(tlω))2 ≤ (1 − t){(tl)2 − (tlω)2} + t{((1 − t)l)2 − ((1 − t)lω)2} = 0

for 0 ≤ t ≤ 1. This contradicts the assumption that c̃ 6= cω. Therefore the

shortest geodesic joining x to y is unique, and it is the ultralimit of shortest

geodesics. Hence, by Lemma 1.2.2 and Lemma 1.2.3, the Busemann NPC in-

equalities for (Nn, dn) implies the Busemann NPC inequality for (Nω, dω). By

Lemma 1.2.2, Lemma 1.2.3 and Lemma 1.2.4, for any x ∈ Nω and shortest

geodesic c : [0, l] → Nω, we have

kdω(x, c(t))2 ≤ (1 − t)dω(x, c(0))2 + tdω(x, c(l))2 − (1 − t)tdω(c(0), c(l))2

for 0 ≤ t ≤ 1.

Example 3.2.3. We fix k > 0. Let L′
k be a family of all global Busemann NPC

spaces (N, rd), where r > 0 and (N, d) is a global Busemann NPC space with the

following condition: For any x ∈ N and shortest geodesic c : [0, l] → N ,

d(x, c(t))2 ≤ (1 − t)d(x, c(0))2 + td(x, c(l))2 − k(1 − t)td(c(0), c(l))2

for 0 ≤ t ≤ 1. The metric space satisfying this inequality was introduced by Ohta

[Oht07]. He proves that this inequality implies the inequality in the definition

of Lk. For an ultralimit (Nω, dω) of a sequence of global Busemann NPC spaces

in L′
k, using the proof that Lk is stable under scaling ultralimit, we can show

that a shortest geodesic joining arbitrary two points in Nω is unique, and it is

the ultralimit of shortest geodesics. Hence, by Lemma 1.2.2 and Lemma 1.2.3,

the Busemann NPC inequality for (Nω, dω) holds. By Lemma 1.2.2, Lemma 1.2.3

and Lemma 1.2.4, for any x ∈ Nω and shortest geodesic c : [0, l] → Nω, we have

dω(x, c(t))2 ≤ (1 − t)dω(x, c(0))2 + tdω(x, c(l))2 − k(1 − t)tdω(c(0), c(l))2

for 0 ≤ t ≤ 1. Therefore, L′
k is also stable under scaling ultralimit.
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Chapter 4

A fixed-point property for

Banach spaces

In this chapter, first, we will give a proof of Theorem 4. Second, we will apply

Theorem 4 to the left regular representation λΓ, p of a finitely generated group

Γ on `p(Γ) with 1 < p < ∞. Finally, we will prove Theorem 3 and Proposition

5, which state relations between Property (FB), Property (TB) and the values of

|∇−Fα,p|.

4.1 Proof of Theorem 4

Let Γ be a finitely generated group, K a finite generating subset of Γ, m a weight

on K, and B a strictly convex Banach space.

Theorem 4. Let π be a linear isometric representation of Γ on B, and 1 ≤
p ≤ ∞. Suppose π has no non-trivial invariant vector. Then the following are

equivalent:

(i) The first cohomology H1(Γ, π) vanishes.

(ii) For any affine isometric action α of Γ on B with the linear part π, there

exists C > 0 such that |∇−Fα, p|(v) ≥ C for all v ∈ B with Fα, p(v) > 0.

Furthermore, in (ii), C can be a constant independent of α.

Proof. Due to Theorem 1, for an affine isometric action α, if there exists C > 0

such that |∇−Fα,p|(v) ≥ C for all v ∈ B such that Fα,p(v) > 0, then α has a

global fixed point. Hence H1(Γ, π) vanishes.

Conversely, we assume that H1(Γ, π) vanishes. Hence B1(π) coincides with

Z1(π). Since π has no non-trivial invariant vector, d : B → B1(π) is one-to-

one. Hence the open mapping theorem implies that the inverse map d−1 of d
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is bounded. Thus there exists Cp > 0 satisfying ‖v‖ = ‖d−1(dv)‖ ≤ Cp‖dv‖p

for all v ∈ B. Take an arbitrary affine isometric action α of Γ on B with the

linear part π. Then there exists a global fixed point v0 ∈ B of α. Since π(γ)v =

α(γ)(v + v0) − v0 for all v ∈ B and γ ∈ Γ, we have Fα,p(v + v0) = Fπ,p(v) for all

v ∈ B. Therefore we may assume that α coincides with π. By the definition of

d, we have Fπ,p(v) = ‖dv‖p for all v ∈ B. Hence we have

|∇−Fπ,p|(v) ≥ lim
ε→0

Fπ,p(v) − Fπ,p(vε)

‖v − vε‖
= lim

ε→0

‖dv‖p − ‖dvε‖p

ε‖v‖
= lim

ε→0

ε‖dv‖p

ε‖v‖
≥ 1

Cp

for all non-trivial v ∈ B, where vε := (1 − ε)v for ε > 0. Since Fπ,p(0) = 0, we

have completed the proof.

Suppose that K is symmetric and m is symmetric in the rest of this section.

Let α = π + c be an affine isometric action of Γ on B. Then we have v−α(γ)v =

(dv−c)(γ) for all γ ∈ Γ and v ∈ B. By Proposition 2.3.2 and Proposition 2.3.3, if

B is strictly convex, smooth and real, or uniformly convex and uniformly smooth,

then for 1 < p < ∞

|∇−Fα,p|(v) =
2

‖dv − c‖p−1
p

∥∥∥∥∥∑
γ∈K

‖(dv − c)(γ)‖p−1m(γ) Re j((dv − c)(γ))

∥∥∥∥∥
B∗

for all v ∈ B such that ‖dv − c‖p > 0. Here Re is trivial, when B is real. Hence,

for C > 0, |∇−Fα,p|(v) ≥ C for all v ∈ B such that Fα,p(v) > 0 if and only if∥∥∥∥∥∑
γ∈K

‖(dv − c)(γ)‖p−1m(γ) Re j((dv − c)(γ))

∥∥∥∥∥
B∗

≥ C

2
‖dv − c‖p−1

p

for all v ∈ B. There exists a one-to-one correspondence between Z1(π) and the

set of all affine isometric actions with the linear part π when the origin of B is

fixed. Since dv−c is a π-cocycle, from Theorem 4, we have the following corollary.

Corollary 4.1.1. Let π be a linear isometric representation of Γ on B, and 1 <

p < ∞. Suppose that B is either strictly convex, smooth and real, or uniformly

convex and uniformly smooth, and π has no non-trivial invariant vector. Then

H1(Γ, π) vanishes if and only if there exists C > 0 such that∥∥∥∥∥∑
γ∈K

‖c(γ)‖p−1m(γ) Re j(c(γ))

∥∥∥∥∥
B∗

≥ C‖c‖p−1
p

for all c ∈ Z1(π).
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4.2 p-Laplacian

Let Γ be a finitely generated infinite group, K a symmetric finite generating

subset of Γ, m a symmetric weight on K, and 1 < p < ∞. We denote by C the

space of all complex numbers.

We denote by F(Γ) the space of all complex-valued (or real-valued) functions

on Γ. The left regular representation λΓ of Γ on F(Γ) is defined by λΓ(γ)f(γ′) =

f(γ−1γ′) for each f ∈ F(Γ) and γ, γ′ ∈ Γ. The Lebesgue space `p(Γ) is the

Banach space {f ∈ F(Γ) :
∑

γ∈Γ |f(γ)|p < ∞} with the norm ‖f‖`p(Γ) :=

(
∑

γ∈Γ |f(γ)|p)1/p. The restriction of λΓ to `p(Γ) is a linear isometric representa-

tion with no non-trivial invariant vector, and we denote it by λΓ, p. We define a

linear map d on F(Γ) into itself by df(γ) := f − λΓ(γ)f for each f ∈ F(Γ) and

γ ∈ Γ. We say that f ∈ F(Γ) is p-Dirichlet finite if df ∈ `p(Γ), and we denote by

Dp(Γ) the space of all p-Dirichlet finite functions.

The space of all constant functions on Γ is a subspace of Dp(Γ), and is regarded

as C (or R). Since this is the kernel of d, we can define a norm on Dp(Γ)/C (or

Dp(Γ)/R) by ‖f‖Dp(Γ) = (
∑

γ∈K ‖df(γ)‖p
`p(Γ)m(γ))1/p. The space `p(Γ) is also a

subspace of Dp(Γ). Because

λΓ, p(γ)df(γ′) + df(γ) = λΓ(γ)f − λΓ(γ)λΓ(γ′)f + f − λΓ(γ)f

= f − λΓ(γγ′)f

= df(γγ′)

for all f ∈ Dp(Γ) and γ, γ′ ∈ Γ, we obtain df ∈ Z1(λΓ, p) for f ∈ Dp(Γ).

Furthermore, it is known that d(Dp(Γ)) = Z1(λΓ, p). Recall that B1(λΓ, p) =

d(`p(Γ)). Therefore d induces the isometric isomorphism from Dp(Γ)/C (or

Dp(Γ)/R) onto Z1(Γ) and the (linear) isomorphism from Dp(Γ)/(`p(Γ) ⊕ C) (or

Dp(Γ)/(`p(Γ) ⊕ R)) onto H1(Γ, λΓ). This is pointed out in [Pul03] and [Pul06].

Hence, for any affine isometric action α on `p(Γ) with the linear part λΓ, p, there

exists a unique fα ∈ Dp(Γ) up to constant such that the cocycle part c of α

coincides with dfα and ‖c‖p = ‖fα‖Dp(Γ).

The p-Laplacian ∆pf of f ∈ Dp(Γ) is defined by

∆pf(x) :=
∑
γ∈K

|df(γ)(x)|p−2 Re(df(γ)(x))m(γ).

Since Fα,p(f) = ‖df − dfα‖p = ‖f − fα‖Dp(Γ) for all f ∈ `p(Γ), by Corollary 2.3.4,

we have

|∇−Fα,p|(f) =
2‖∆p(f − fα)‖`q(Γ)

‖f − fα‖p−1
Dp(Γ)
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for all f ∈ `p(Γ) such that Fα,p(f) > 0. Using Corollary 4.1.1, we have the

following corollary of Theorem 4.

Corollary 4.2.1. The first cohomology H1(Γ, λΓ, p) vanishes if and only if there

exists C > 0 such that ‖∆pf‖q
`q(Γ) ≥ C‖f‖p−1

Dp(Γ) for all f ∈ Dp(Γ).

4.3 Properties (FB), (TB) and (AGB, p)

In this section, we review the definitions of Property (FB) and Property (TB),

which ware introduced in [BFGM07], and will introduce a new property: Property

(AGB,p). Also, we will prove Theorem 3 and Proposition 5.

Let Γ be a finitely generated group, K a finite generating subset, and m a

weight. Let B be a Banach space and 1 < p < ∞.

Definition 4.3.1 ([BFGM07]). We say Γ has Property (FB) if every affine iso-

metric action of Γ on B has a global fixed point.

For a linear isometric representation π of Γ on B, we denote by Bπ(Γ) the

closed subspace consisting of all invariant vectors of π. We can define a linear

isometric representation π′ of Γ on B/Bπ(Γ) by π′(γ)[v] := [π(γ)v] for each v ∈ B

and γ ∈ Γ, where [v] is the equivalence class of v.

Definition 4.3.2 ([BFGM07]). We say Γ has Property (TB) if, for every non-

trivial linear isometric representation π of Γ on B, there exists C > 0 such that

maxγ∈K ‖u − π′(γ)u‖ ≥ C‖u‖ for all u ∈ B/Bπ(Γ).

We rewrite the theorem due to A. Guichardet.

Theorem 4.3.3 ([Gui72]). If Γ has Property (FB), then it has Property (TB).

For an affine isometric action α = π + c of Γ on B, we can define an affine

isometric action α′ on B′ := B/Bπ(Γ) by α′(γ)[v] := [α(γ)v] = π′(γ)[v] + [c(γ)]

for each v ∈ B and γ ∈ Γ.

Definition 4.3.4. We say Γ has Property (AGB, p) if, for every affine isometric

action α of Γ on B, there exists C > 0 such that |∇−Fα′, p|(u) ≥ C for all u ∈ B′

with Fα′, p(u) > 0.

Theorem 3. If Γ has Property (FB), then it has Property (AGB, p) for 1 < p <

∞.
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Proof. Take an arbitrary affine isometric action α = π + c of Γ on B. Since Γ has

Property (FB), there exists a global fixed point v0 of α. We can regard [v0] as the

origin 0 of B′, hence we may assume that α′ coincides with π′. By Guichardet’s

theorem, we have C > 0 such that maxγ∈K ‖u − π′(γ)u‖ ≥ C‖u‖ for all u ∈ B′.

For v ∈ B′, since

Fπ′, p(v)p =
∑
γ∈K

‖v − π′(γ)v‖pm(γ) ≥ max
γ∈K

‖v − π′(γ)v‖p min
γ∈K

m(γ),

we obtain Fπ′, p(v) ≥ C‖v‖(minγ∈K m(γ))1/p. Set vε = (1−ε)v for ε > 0. If v 6= 0,

because Fπ′, p(vε) = (1 − ε)Fπ′, p(v) for ε > 0, we have

|∇−Fπ′, p|(v) ≥ lim
ε→0

Fπ′, p(v) − Fπ′, p(vε)

‖v − vε‖
= lim

ε→0

εFπ′, p(v)

ε‖v‖
≥ C

(
min
γ∈K

m(γ)

)1/p

.

Since Fπ′, p(0) = 0, this completes the proof.

We can not use Theorem 4 to prove Theorem 3, because some affine isometric

action on B′ may not extend to B.

The converse of Theorem 3 is false, because Z has Property (AGR, p) with

1 < p < ∞ but does not have Property (FR). Indeed, Z acts on R by isometric

translations: α(n)t := t + n for each t ∈ R and n ∈ Z. Hence Z does not have

Property (FR). On the other hand, for an affine isometric action α with the

trivial linear part, Fα′, p = 0. For an affine isometric action α with a non-trivial

linear part, rescaling the metric of R, we can describe α′ as α′(2n + 1)t := −t + s

and α′(2n)t := t for each t ∈ R and n ∈ Z, where s ∈ R. The action α′ fixes

only s/2. The set K = {1} is a finite generating subset of Z and a function m

defined by m(1) = 1 is a weight. Then Fα′, p(t) = |2t − s| for all t ∈ R. Hence

|∇−Fα′, p|(t) = 2 > 0 unless t = s/2. Therefore Z has Property (AGR, p).

Proposition 5. Suppose that Γ is Abelian, K is symmetric, m is symmetric and

B is uniformly convex, uniformly smooth, and real. If Γ has Property (TB), then

it has Property (AGB, p) for all 1 < p < ∞.

Proof. Let α = π + c be an arbitrary affine isometric action of Γ on B with a

non-trivial linear part π. Note that B′ is also a uniformly convex and uniformly

smooth real Banach space. Let u ∈ B′ such that Fα′, p(u) > 0. Set

T (γ)u = u − α′(γ)u, T0(γ)u = u − π′(γ)u,

O =
∑
γ∈K

m(γ)[c(γ)], X(u) =
∑
γ∈K

m(γ)π′(γ)u,

Y (u) =
∑
γ∈K

m(γ)α′(γ)u, W (u) = u − Y (u) = u − X(u) − O
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for each γ ∈ K. By Proposition 2.3.2, we have

|∇−Fα′, p|(u) ≥ 1

Fα′, p(u)p−1

∑
γ∈K

‖T (γ)u‖p−1 j(T (γ)u)(T0(γ)w)

‖w‖
m(γ)

for all non-trivial w ∈ B′. For any γ ∈ K

j(T (γ)u)(T0(γ)W (u)) = j(T (γ)u)(T0(γ)u − T0(γ)Y (u))

= j(T (γ)u)(T (γ)u − T (γ)Y (u))

= ‖T (γ)u‖ − j(T (γ)u)T (γ)Y (u)

≥ ‖T (γ)u‖ − {‖T (γ)u + T (γ)Y (u)‖ − ‖T (γ)u‖}
= 2‖T (γ)u‖ − ‖T (γ)u + T (γ)Y (u)‖.

Because
∑

κ∈K m(κ) = 1, we have

‖T (γ)u + T (γ)Y (u)‖

=

∥∥∥∥∥∑
κ∈K

m(κ)T (γ)u + T (γ)

(∑
κ∈K

m(κ)α′(κ)u

)∥∥∥∥∥
=

∥∥∥∥∥∑
κ∈K

m(κ)T (γ)u + T0(γ)

(∑
κ∈K

m(κ)α′(κ)u

)
+

∑
κ∈K

m(κ)[c(γ)]

∥∥∥∥∥
=

∥∥∥∥∥∑
κ∈K

m(κ) (T (γ)u + T (γ)α′(κ)u)

∥∥∥∥∥
≤

∑
κ∈K

m(κ)‖T (γ)u + T (γ)α′(κ)u‖

for all γ ∈ K. Since Γ is Abelian, we have

T (γ)α′(κ)u = α′(κ)u − α′(γ)α′(κ)u

= α′(κ)u − α′(κ)α′(γ)u

= π′(κ)u − π′(κ)α′(γ)u

= π′(κ)(T (γ)u)

for all γ, κ ∈ K. Hence we get

‖T (γ)u + T (γ)α′(κ)u‖ = ‖T (γ)u + π′(κ)(T (γ)u)‖

for all γ, κ ∈ K. Due to Property (TB), there exists C(π′) > 0 such that any

γ ∈ K satisfies

‖T (γ)u − π′(κγ)(T (γ)u)‖ ≥ C(π′)‖T (γ)u‖
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for some κγ ∈ K. Since B′ is uniformly convex, we have

1 − 1

2

∥∥∥∥ T (γ)u

‖T (γ)u‖
+ π′(κγ)

T (γ)u

‖T (γ)u‖

∥∥∥∥ ≥ δB′(C(π′))

for all γ ∈ K with T (γ)u 6= 0. Then we have

2‖T (γ)u‖ − ‖T (γ)u + π′(κγ)T (γ)u‖ ≥ 2δB′(C(π′))‖T (γ)u‖

for all γ ∈ K. On the other hand, by Hölder’s inequality,

‖W (u)‖ ≤
∑
γ∈K

m(γ)‖T (γ)u‖ ≤

(∑
γ∈K

m(γ)‖T (γ)u‖p

)1/p

= Fα′, p(u).

Therefore, in the case that ‖W (u)‖ 6= 0, we have

∑
γ∈K

‖T (γ)u‖p−1 j(T (γ)u)(T0(γ)W (u))

‖W (u)‖
m(γ)

≥
∑
γ∈K

‖T (γ)u‖p−1

∑
κ∈K m(κ)(2‖T (γ)u‖ − ‖T (γ)u + π′(κ)(T (γ)u)‖)

‖W (u)‖
m(γ)

≥
∑
γ∈K

‖T (γ)u‖p−1m(κγ)(2‖T (γ)u‖ − ‖T (γ)u + π′(κ)(T (γ)u)‖)
‖W (u)‖

m(γ)

≥
∑
γ∈K

‖T (γ)u‖p−1 minκ∈K m(κ)2δB′(C(π′))‖T (γ)u‖
Fα′, p(u)

m(γ)

= min
κ∈K

m(κ)2δB′(C(π′))Fα′, p(u)p−1,

that is, C := 2δB′(C(π′)) minκ∈K m(κ) ≤ |∇−Fα′, p|(u).

In the case that ‖W (u)‖ = 0, if O = u − X(u) 6= 0, we have

W (au) = au − X(au) − O = a(u − X(u)) − O = (a − 1)O

for a ∈ R. Hence W (au) 6= 0 if a 6= 1. Because T (γ)(au) = T (γ)u−(1−a)T0(γ)u,

we have ∥∥∥∥ T (γ)(au)

‖T (γ)(au)‖
− T (γ)u

‖T (γ)u‖

∥∥∥∥
=

∥∥∥∥T (γ)u − (1 − a)T0(γ)u

‖T (γ)(au)‖
− T (γ)u

‖T (γ)(au)‖
‖T (γ)(au)‖
‖T (γ)u‖

∥∥∥∥
=

∥∥∥∥(
1 − ‖T (γ)(au)‖

‖T (γ)u‖

)
T (γ)u

‖T (γ)(au)‖
− (1 − a)

T0(γ)u

‖T (γ)(au)‖

∥∥∥∥
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for all γ ∈ K with ‖T (γ)(u)‖ 6= 0 and a < 1 which is sufficiently close to 1.

Hence, by Proposition 1.3.5, j(T (γ)(au)) converges to j(T (γ)u) in B∗ as a → 1

for all γ ∈ K with ‖T (γ)u‖ 6= 0. For γ ∈ K with ‖T (γ)u‖ = 0, we have

lim
a↗1

|‖T (γ)(au)‖p−1j(T (γ)(au))w| ≤ lim
a↗1

‖T (γ)(au)‖p−1‖w‖ = 0

for all w ∈ B. Thus, using the conclusion in the case that W (u) 6= 0 and the

proof of Proposition 2.3.2, we have

C ≤ lim
a↗1

∑
γ∈K

‖T (γ)(au)‖p−1 j(T (γ)(au))(T0(γ)W (au))

‖W (au)‖
m(γ)

= lim
a↗1

2
∑
γ∈K

‖T (γ)(au)‖p−1j(T (γ)(au))
W (au)

‖W (au)‖
m(γ)

= 2
∑
γ∈K

‖T (γ)u‖p−1j(T (γ)u)
−O

‖O‖
m(γ)

≤ |∇−Fα′, p|(u).

On the other hand, if O = 0, u must be trivial. We prove this by contradiction.

Suppose u is non-trivial. By Property (TB), there exist C(π′) > 0 and γ1 ∈ K

such that ‖π′(γ1)u − u‖ ≥ C(π′)‖u‖. Since B′ is uniformly convex, we have

1 − ‖π′(γ1)u + u‖
2‖u‖

≥ δB′(C(π′)).

Since W (u) and O are trivial, we have u = X(u). Hence we obtain

‖2u‖ = ‖u + X(u)‖

=

∥∥∥∥∥∑
γ∈K

m(γ)(u + π′(γ)u)

∥∥∥∥∥
≤

∑
γ∈K

m(γ)‖u + π′(γ)u‖

≤ m(γ1)(2 − 2δB′(C(π′)))‖u‖ +
∑

γ∈K;γ 6=γ1

m(γ)‖u + π′(γ)u‖

≤ 2‖u‖ − 2δB′(C(π′))m(γ1)‖u‖
< ‖2u‖.

This is a contradiction. Hence we conclude that u is trivial, and w ∈ B′\{u}
satisfies W (εw) 6= 0 for all ε > 0. Because T (γ)(εw) = εT (γ)w− (1− ε)[c(γ)] and
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T (γ)u = −[c(γ)], we have∥∥∥∥ T (γ)(εw)

‖T (γ)(εw)‖
− T (γ)u

‖T (γ)u‖

∥∥∥∥
=

∥∥∥∥εT (γ)w − (1 − ε)[c(γ)]

‖T (γ)(εw)‖
− T (γ)u

‖T (γ)(εw)‖
‖T (γ)(εw)‖
‖T (γ)u‖

∥∥∥∥
=

∥∥∥∥ε
T (γ)w

‖T (γ)(εw)‖
−

(
1 − ε − ‖T (γ)(εw)‖

‖T (γ)u‖

)
T (γ)u

‖T (γ)(εw)‖

∥∥∥∥
for all γ ∈ K with ‖T (γ)u‖ 6= 0 and sufficiently small ε. The last line of the

equality above approaches zero as ε → 0. Since W (εw) = ε(w−X(w)) = εW (w),

as in the case that O 6= 0 and ‖W (u)‖ = 0, we have

C ≤ lim
ε↘0

∑
γ∈K

‖T (γ)(εw)‖p−1 j(T (γ)(εw))(T0(γ)W (εw))

‖W (εw)‖
m(γ)

= 2
∑
γ∈K

‖T (γ)u‖p−1j(T (γ)u)
W (w)

‖W (w)‖
m(γ)

≤ |∇−Fα′, p|(u).

This completes the proof.

Note that the assumption that Γ is Abelian is used only for the case that u

satisfies ‖W (u)‖ 6= 0. Hence, if there exists C > 0 satisfying |∇−Fα′, p|(u) ≥ C for

all u ∈ B with W (u) 6= 0, we can show Proposition 5 without the assumption.
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Chapter 5

A generalization of a result of

Żuk

A. Żuk gave a criterion for a finitely generated group to have Property (T ) in

[Żuk03]. We will generalize the result to the case of uniformly convex and uni-

formly smooth real Banach spaces.

5.1 Preliminaries

Let Γ be a finitely generated group, K a symmetric finite generating subset of Γ

not containing the identity element e of Γ. Let (B, ‖ ‖) be a uniformly convex

and uniformly smooth real Banach space. Fix p with 1 < p < ∞ in this chapter.

We set L(K) to be a finite oriented graph whose vertex set is K and edge set

is T := {(γ, γ′) ∈ K × K : γ−1γ′ ∈ K}. Note that (γ, γ′, γ−1γ′) ∈ K × K × K

if and only if (γ−1, γ−1γ′, γ′) ∈ K × K × K. Hence (γ, γ′) ∈ T if and only if

(γ−1, γ−1γ′) ∈ T . Set K2 = {γγ′ ∈ Γ : γ, γ′ ∈ K}. Then K ′ := K ∪ K2\{e}
is a symmetric finite generating subset of Γ, and L(K ′) is connected. Indeed,

all elements in K are connected in L(K ′) and, for any γ, γ′ ∈ K, γ−1γ′ and γ

are connected in L(K ′). Hence we may assume that L(K) is connected. We

denote by deg(γ) the degree of vertex γ ∈ L(K), that is, the number of edges

adjacent to γ. Since L(K) is connected, deg(γ) > 0 for all γ ∈ L(K). Note that

deg(γ) = deg(γ−1) for all γ ∈ L(K) and
∑

γ∈K deg(γ) = |T |.
We define ∗ : B → B∗ by u∗ = ‖u‖p−1j(u) for each u ∈ B. Although ∗ is not

linear, (−v)∗ = −v∗ for all v ∈ B. Besides, by the uniform continuity and the

uniform smoothness, ∗ is one-to-one from B onto B∗. Thus we can write w ∈ B∗

as w = v∗ by an appropriate v ∈ B. Conversely, any u ∈ B is written as (u∗)∗.

For u ∈ B, we say u∗ to be the dual of u, and u the dual of u∗. The map ∗

is continuous. Indeed, the continuity at 0 is obvious. By Proposition 1.3.5, for
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v ∈ B\{0}, we have

‖v∗ − u∗‖B∗

= ‖‖v‖p−1j(v) − ‖u‖p−1j(u)‖B∗

≤ ‖‖v‖p−1(j(v) − j(u))‖B∗ + ‖(‖v‖p−1 − ‖u‖p−1)j(u)‖B∗

≤ ‖v‖p−1ρB

(
2

∥∥∥∥ v

‖v‖
− u

‖u‖

∥∥∥∥)/ ∥∥∥∥ v

‖v‖
− u

‖u‖

∥∥∥∥ + |‖v‖p−1 − ‖u‖p−1|

for all u ∈ B\{0}. Since ρB(τ)/τ → 0 as τ → 0, ∗ is continuous at v.

For u ∈ B, ‖u∗‖B∗ = ‖u‖p−1 = ‖u‖p/q, where q is the conjugate exponent of p,

that is, q = p/(p−1), which satisfies 1/p+1/q = 1. Hence u∗(u) = ‖u‖p = ‖u∗‖q
B∗

for all u ∈ B. Conversely, for u, v ∈ B, if v∗(u) = ‖u‖p = ‖v∗‖q
B∗ , then we have

v∗ = u∗. Indeed, u = 0 if and only if v∗ = 0. If v∗ 6= 0, since

j(v)(u) = v∗(u)/‖v∗‖B∗ = ‖v∗‖q−1
B∗ = ‖u‖(q−1)p/q = ‖u‖(1−1/q)p = ‖u‖,

we have j(u) = j(v). Hence we obtain

v∗ = ‖v‖p−1j(v) = ‖v∗‖(p−1)q/p
B∗ j(v) = ‖u‖p−1j(u) = u∗.

We denote v∗(u) by 〈u, v∗〉 for each v, u ∈ B. Note that |〈u, v∗〉| ≤ ‖u‖‖v∗‖B∗

for all u, v ∈ B.

Let π be a linear isometric representation of Γ on B. For each γ ∈ Γ, define

π∗(γ) to be an operator satisfying 〈u, π∗(γ)v∗〉 := 〈π(γ−1)u, v∗〉 for u, v ∈ B.

Then π∗ is a linear isometric representation of Γ on B∗. Indeed, for any γ ∈ Γ,

since ‖π(γ)v‖ = ‖v‖, we have

‖v‖‖π∗(γ)v∗‖B∗ ≥ 〈π(γ)v, π∗(γ)v∗〉 = 〈v, v∗〉 = ‖v‖p,

that is, ‖π∗(γ)v∗‖B∗ ≥ ‖v‖p−1 = ‖v∗‖B∗ and

‖π∗(γ)v∗‖B∗ = sup
‖u‖=1

〈u, π∗(γ)v∗〉 = sup
‖u‖=1

〈π(γ−1)u, v∗〉 ≤ sup
‖u‖=1

‖u‖‖v∗‖B∗ = ‖v∗‖B∗

for all v ∈ B. Hence π∗(γ) is an isometry. Since π∗(γ)π∗(γ−1) is the identity map,

π∗(γ) is surjective. Therefore π∗ is a homomorphism from Γ into O(B∗), that is, a

linear isometric representation of Γ on B∗. Furthermore, since 〈π(γ)v, π∗(γ)v∗〉 =

‖v‖p = ‖π(γ)v‖p and ‖π∗(γ)v∗‖q
B∗ = ‖v∗‖q = ‖v‖p, we have (π(γ)v)∗ = π∗(γ)v∗

for all v ∈ B and γ ∈ Γ.

Let M be the linear space of all maps from K to B, and M∗ be the linear

space of all maps from K to B∗. For f ∈ M , we denote by f ∗ the map sending

γ ∈ K to (f(γ))∗ ∈ B∗. Since ∗ is one-to-one, every map in M∗ is written as f ∗
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by a certain f ∈ M . Also, every g ∈ M is written as (g∗)∗ by a certain g∗ ∈ M∗.

We say f ∗ to be the dual map of f , and f the dual map of f∗.

We define norms on M and M∗ by

‖f‖M :=

(∑
γ∈K

‖f(γ)‖p deg(γ)

|T |

)1/p

and ‖g∗‖M∗ :=

(∑
γ∈K

‖g∗(γ)‖q
B∗

deg(γ)

|T |

)1/q

for each f ∈ M and g∗ ∈ M∗ respectively. Then M and M∗ become uniformly

convex real Banach spaces (see [Bea85]). We define a bilinear mapping on M×M∗

by

〈f, g∗〉 :=
∑
γ∈K

〈f(γ), g∗(γ)〉deg(γ)

|T |

for each f ∈ M and g∗ ∈ M∗. Using Hölder’s inequality, we can easily show that

|〈f, g∗〉| ≤ ‖f‖M‖g∗‖M∗ and 〈f, f ∗〉 = ‖f‖p
M = ‖f ∗‖q

M∗
for f ∈ M and g∗ ∈ M∗.

Lemma 5.1.1. We can regard g∗ ∈ M∗ as a continuous linear functional on M

by g∗(f) := 〈f, g∗〉 for each f ∈ M . This correspondence induces an isometric

isomorphism from M∗ to M∗, where M∗ is the dual Banach space of M .

Proof. Let g∗ ∈ M∗. Obviously, g∗(·) is linear. If ‖g∗‖M∗ = 0, then ‖g∗(γ)‖B∗ = 0

for all γ ∈ K. Hence

‖g∗‖M∗ = sup
‖f‖M=1

|g∗(f)| = sup
‖f‖M=1

|〈f, g∗〉| ≤ sup
‖f‖M=1

∣∣∣∣∣∑
γ∈K

〈f(γ), g∗(γ)〉deg(γ)

|T |

∣∣∣∣∣ = 0.

Suppose ‖g∗‖M∗ 6= 0. Then ‖g‖M 6= 0. We have

‖g∗‖M∗ = sup
‖f‖M=1

|〈f, g∗〉|

= sup
‖f‖M=1

∣∣∣∣∣∑
γ∈K

〈f(γ), g∗(γ)〉deg(γ)

|T |

∣∣∣∣∣
≥

∣∣∣∣∣∑
γ∈K

〈g(γ), g∗(γ)〉
‖g‖M

deg(γ)

|T |

∣∣∣∣∣
=

‖g∗‖q
M∗

‖g‖M

.

Since ‖g‖M = ‖g∗‖q/p
M∗

= ‖g∗‖q(1−1/q)
M∗

= ‖g∗‖q−1
M∗

, we obtain ‖g∗‖M∗ ≤ ‖g∗‖M∗ . On
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the other hand, using Hölder’s inequality, we have

‖g∗‖M∗ = sup
‖f‖M=1

∣∣∣∣∣∑
γ∈K

〈f(γ), g∗(γ)〉deg(γ)

|T |

∣∣∣∣∣
≤ sup

‖f‖M=1

(∑
γ∈K

‖f(γ)‖‖g∗(γ)‖B∗
deg(γ)

|T |

)

≤ sup
‖f‖M=1

(∑
γ∈K

‖f(γ)‖p deg(γ)

|T |

)1/p (∑
γ∈K

‖g∗(γ)‖q
B∗

deg(γ)

|T |

)1/q

= ‖g∗‖M∗ .

Therefore, ‖g∗‖M∗ = ‖g∗‖M∗ for all g∗ ∈ M∗, and g∗(·) ∈ M∗. In particular, the

correspondence is injective.

Next we prove that any g̃ ∈ M∗ has a map in M∗ corresponding to g̃, that is,

the correspondence is surjective. For each v ∈ B and γ ∈ K, we define vγ ∈ M

by vγ(γ) = v and vγ(γ
′) = 0 for other γ′ ∈ K. Then every f ∈ M is written as∑

γ∈K(f(γ))γ. We define g∗
0 ∈ M∗ by g∗

0(γ)(v) := g̃(vγ)|T |/ deg(γ) for each v ∈ B

and γ ∈ K. Then, since g̃ is linear, for any f ∈ M , we have

g̃(f) =
∑
γ∈K

g̃((f(γ))γ) =
∑
γ∈K

g∗
0(γ)(f(γ))

deg(γ)

|T |
= 〈f, g∗

0〉 = g∗
0(f).

Therefore g∗
0 corresponds to g̃. This completes the proof.

This lemma implies that M is uniformly smooth, because M∗ is uniformly

convex and the dual Banach space of a uniformly convex real Banach space is

uniformly smooth. Similarly, we can show the following

Lemma 5.1.2. We can regard f ∈ M as a continuous linear functional on M∗

by g∗(f) := 〈f, g∗〉 for each g∗ ∈ M∗. This correspondence induces an isometric

isomorphism from M to (M∗)
∗.

Hence M∗ is also uniformly smooth. Set

C1 := {f ∈ M : f(γ−1) = −π(γ−1)f(γ) for all γ ∈ K},
C1

∗ := {g∗ ∈ M∗ : g∗(γ−1) = −π∗(γ−1)g∗(γ) for all γ ∈ K}.

We can easily see that C1 is closed in M , and C1
∗ is also closed in M∗. Hence C1

and C1
∗ are uniformly convex and uniformly smooth real Banach spaces. More-

over, since every f ∈ C1 satisfies

f∗(γ−1) = (f(γ−1))∗ = (−π(γ−1)f(γ))∗ = −π∗(γ−1)f ∗(γ)

for all γ ∈ K, f∗ ∈ C1
∗ . Conversely, every map in C1

∗ is the dual of a map in C1.
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Lemma 5.1.3. The correspondence in Lemma 5.1.1 induces an isometric iso-

morphism from C1
∗ onto (C1)∗.

Proof. For g∗ ∈ C1
∗ , since g ∈ C1, as in the proof of Lemma 5.1.1, we have

‖g∗‖C1
∗ (= ‖g∗‖M∗) = ‖g∗‖(C1)∗ . Hence we should show that any g̃ ∈ (C1)∗ has a

map in C1
∗ corresponding to g̃.

We denote by Hom B the dual linear space of B. Note that we are using the

symbol B∗ for the dual Banach space, and Hom B is different from B∗ in general.

For each γ ∈ Γ, we set (π∗(γ)w)(v) := w(π(γ−1)v) for each w ∈ Hom B and

v ∈ B. Then π∗(γ) is a linear operator for all γ ∈ Γ, and π∗ is a homomorphism

from Γ into the group of all bijective linear operators on Hom B. We can regard

C1 as {
(f(γ)) ∈

⊕
γ∈K

Bγ : f(γ−1) = −π(γ−1)f(γ) for all γ ∈ K

}
,

where Bγ is a copy of B indexed by each γ ∈ K. Since K is a finite set, we have

Hom(
⊕

γ∈K Bγ) =
⊕

γ∈K Hom Bγ. Hence Hom C1 is isomorphic to

⊕
γ∈K

Hom Bγ

/ {
(h(γ)) ∈

⊕
γ∈K

Hom Bγ :
∑
γ∈K

h(γ)(f(γ)) = 0 for all f ∈ C1

}
.

For an arbitrary γ0 ∈ K, we take f ∈ C1 such that ‖f(γ)‖ = 0 unless γ = γ0 or

γ = γ−1
0 . If γ0 6= γ−1

0 , then we have∑
γ∈K

h(γ)(f(γ)) = h(γ0)(f(γ0)) + h(γ−1
0 )(f(γ−1

0 ))

= h(γ0)(f(γ0)) + h(γ−1
0 )(−π(γ−1

0 )f(γ0))

= h(γ0)(f(γ0)) − (π∗(γ0)h(γ−1
0 ))(f(γ0))

= (h(γ0) − π∗(γ0)h(γ−1
0 ))(f(γ0))

for all (h(γ)) ∈
⊕

γ∈K Hom Bγ. If γ0 = γ−1
0 , then we have

∑
γ∈K

h(γ)(f(γ)) =
1

2

(
h(γ0)(f(γ0)) + h(γ−1

0 )(f(γ−1
0 ))

)
=

1

2

(
(h(γ0) − π∗(γ0)h(γ−1

0 ))(f(γ0))
)

for all (h(γ)) ∈
⊕

γ∈K Hom Bγ. Any map in C1 is described as the sum of maps

such that the values of each of these are trivial except for a certain element in K

and its inverse. Hence (h(γ)) ∈
⊕

γ∈K Hom Bγ satisfies
∑

γ∈K h(γ)(f(γ)) = 0 for
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all f ∈ C1 if and only if it satisfies h(γ) = π∗(γ)h(γ−1) for all γ ∈ K. Therefore

Hom C1 is isomorphic to⊕
γ∈K

Hom Bγ

/ {
(h(γ)) : h(γ) = π∗(γ)h(γ−1) for all γ ∈ K

}
.

Every (h(γ)) ∈
⊕

γ∈K Hom Bγ is decomposed as

(h(γ)) =

(
h(γ) − π∗(γ)h(γ−1)

2

)
+

(
h(γ) + π∗(γ)h(γ−1)

2

)
,

and satisfies

π∗(γ−1)

(
h(γ) − π∗(γ)h(γ−1)

2

)
= −h(γ−1) − π∗(γ−1)h(γ)

2

and

π∗(γ−1)

(
h(γ) + π∗(γ)h(γ−1)

2

)
=

h(γ−1) + π∗(γ−1)h(γ)

2
.

On the other hand, for (h(γ)) ∈
⊕

γ∈K Hom Bγ, h(γ) = −π∗(γ)h(γ−1) and h(γ) =

π∗(γ)h(γ−1) for all γ ∈ K if and only if (h(γ)) = 0 for all γ ∈ K. Therefore⊕
γ∈K Hom Bγ is isomorphic to{

(h(γ)) : h(γ) = π∗(γ)h(γ−1)
}
⊕

{
(h(γ)) : h(γ) = −π∗(γ)h(γ−1)

}
,

and hence Hom C1 is isomorphic to{
(h(γ)) ∈

⊕
γ∈K

Hom Bγ : h(γ) = −π∗(γ)h(γ−1) for all γ ∈ K

}
.

Let g̃ ∈ (C1)∗. For each v ∈ B and γ ∈ K, we define vγ ∈ M by vγ(γ) = v and

vγ(γ
′) = 0 for other γ′ ∈ K. We define g∗

0 ∈ M∗ by g∗
0(γ)(v) := g̃(vγ)|T |/ deg(γ)

for each v ∈ B and γ ∈ K. Then, as the proof of Lemma 5.1.1, we can show

that g̃(f) = g∗
0(f) for all f ∈ C1. Because g̃ ∈ Hom C1, g∗

0 ∈ Hom C1. Regarding

Hom C1 as a subspace of
⊕

γ∈K Hom Bγ as above, we see that g∗
0 ∈ Hom C1∩M∗ =

C1
∗ . Therefore g̃ = g∗

0. This completes the proof.

Let C2 be the linear space of all maps from T to B, and C2
∗ the linear space

of all maps from T to B∗. As in the case of M∗, for h ∈ C2, we denote by h∗ the

dual map in C2
∗ sending (γ, γ′) ∈ T to (h(γ, γ′))∗ ∈ B∗. We define norms on C2

and C2
∗ by

‖h‖C2 :=

(∑
t∈T

‖f(t)‖p

|T |

)1/p

and ‖l∗‖C2
∗ :=

(∑
t∈T

‖l∗(t)‖q
B∗

|T |

)1/q

,
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then C2 and C2
∗ become uniformly convex and uniformly smooth real Banach

spaces as M and M∗. We define a bilinear mapping on C2 × C2
∗ by

〈h, l∗〉 :=
∑
t∈T

〈h(t), l∗(t)〉
|T |

for each h ∈ C2 and l∗ ∈ C2
∗ .

We define a linear operator d0 : B → C1 by (d0u)(γ) := π(γ)u − u for

each u ∈ B and γ ∈ K. We also define a linear operator d1 : C1 → C2 by

(d1f)(γ, γ′) := f(γ) − f(γ′) + π(γ)f(γ−1γ′) for each f ∈ C1 and (γ, γ′) ∈ T .

Similarly, we define a linear operator δ0 : B∗ → C1
∗ by (δ0v∗)(γ) := π∗(γ)v∗ − v∗

for each v∗ ∈ B∗ and γ ∈ K. We also define a linear operator δ1 : C1
∗ → C2

∗ by

(δ1g∗)(γ, γ′) := g∗(γ) − g∗(γ′) + π∗(γ)g∗(γ−1γ′) for each g∗ ∈ C1
∗ and (γ, γ′) ∈ T .

Lemma 5.1.4. d1 ◦ d0 = 0.

Proof. Every u ∈ B satisfies

(d1 ◦ d0u)(γ, γ′) = d1(π(·)u − u)(γ, γ′)

= (π(γ)u − u) − (π(γ′)u − u) + π(γ)(π(γ−1γ′)u − u)

= 0

for all (γ, γ′) ∈ T , that is, d1 ◦ d0 = 0.

Lemma 5.1.5. ‖d1‖ ≤ 3.

Proof. For f ∈ C1 we have

∑
(γ,γ′)∈T

‖f(γ−1γ′)‖p

|T |
=

∑
(γ−1,γ−1γ′)∈T

‖f(γ−1γ′)‖p

|T |

=
∑

(γ′′(γ′)−1,γ′′)∈T

‖f(γ′′)‖p

|T |

=
∑

γ′′∈K

‖f(γ′′)‖p deg(γ′′)

|T |
,
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where we write γ−1γ′ as γ′′. Therefore we have

‖d1f‖C2

=

 ∑
(γ,γ′)∈T

‖f(γ) − f(γ′) + π(γ)f(γ−1γ′)‖p

|T |

1/p

≤

 ∑
(γ,γ′)∈T

(‖f(γ)‖ + ‖f(γ′)‖ + ‖π(γ)f(γ−1γ′)‖)p

|T |

1/p

≤

 ∑
(γ,γ′)∈T

‖f(γ)‖p

|T |

 1
p

+

 ∑
(γ,γ′)∈T

‖f(γ′)‖p

|T |

 1
p

+

 ∑
(γ,γ′)∈T

‖f(γ−1γ′)‖p

|T |

 1
p

= 3

(∑
γ∈K

‖f(γ)‖p deg(γ)

|T |

) 1
p

= 3‖f‖M .

Let d∗ be the adjoint operator of d0 defined by 〈u, d∗g∗〉 := 〈d0u, g∗〉 for

each u ∈ B and g∗ ∈ C1
∗ . Let δ∗ be the adjoint operator of δ0 defined by

〈δ∗f, v∗〉 := 〈f, δ0v∗〉 for each v∗ ∈ B∗ and f ∈ C1.

Lemma 5.1.6. For g∗ ∈ C1
∗ and f ∈ C1

d∗g∗ = −2
∑
γ∈K

g∗(γ)
deg(γ)

|T |
and δ∗f = −2

∑
γ∈K

f(γ)
deg(γ)

|T |
.

Proof. For u ∈ B and γ ∈ K

〈d0u(γ), g∗(γ)〉 = 〈π(γ)u − u, g∗(γ)〉
= 〈u, π∗(γ−1)g∗(γ)〉 − 〈u, g∗(γ)〉
= 〈u,−g∗(γ−1)〉 − 〈u, g∗(γ)〉.

Since K is symmetric and deg(γ) = deg(γ−1) for all γ ∈ K, we have

〈d0u, g∗〉 =
∑
γ∈K

〈d0u(γ), g∗(γ)〉deg(γ)

|T |

=
∑
γ∈K

〈u,−g∗(γ−1)〉deg(γ)

|T |
−

∑
γ∈K

〈u, g∗(γ)〉deg(γ)

|T |

= −2
∑
γ∈K

〈u, g∗(γ)〉deg(γ)

|T |
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for all u ∈ B. This implies 〈u, d∗g∗〉 = 〈u,−2
∑

γ∈K g∗(γ) deg(γ)/|T |〉 for all

u ∈ B, hence the expression of d∗ is obtained. The proof of the expression of δ∗

is the same as that of the expression of d∗.

Lemma 5.1.7. ‖δ∗‖ ≤ 2.

Proof. For f ∈ C1, we have

‖δ∗f‖ =

∥∥∥∥∥−2
∑
γ∈K

f(γ)
deg(γ)

|T |

∥∥∥∥∥
≤ 2

(∑
γ∈K

‖f(γ)‖deg(γ)

|T |

)

≤ 2

(∑
γ∈K

‖f(γ)‖p deg(γ)

|T |

)1/p (∑
γ∈K

deg(γ)

|T |

)1/q

= 2‖f‖M .

Hence ‖δ∗‖ ≤ 2.

Let B1 be the kernel of d1.

Proposition 5.1.8. Suppose that π has no non-trivial invariant vector. If there

exists C > 0 such that 〈δ∗f, d∗f∗〉 ≥ C〈f, f ∗〉 for all f ∈ B1, then we have

max
γ∈K

‖(d0u)(γ)‖ = max
γ∈K

‖π(γ)u − u‖ ≥ C

2
‖u‖

for all u ∈ B.

Proof. If B is 0-dimentional, then the proposition is obvious. Suppose that B

is not 0-dimentional. Since π has no non-trivial invariant vector, d0(B) contains

a non-trivial vector. Since d0(B) ⊂ B1 by Lemma 5.1.4, B1 also contains a

non-trivial vector.

First, we prove that the assumption implies that d0δ∗ : B1 → B1 has a

bounded inverse. By Lemma 5.1.5, d1 is bounded, hence B1 is a closed subspace

of C1. By the assumption of the proposition, we have

C‖f‖p
M = C〈f, f ∗〉 ≤ 〈d0δ∗f, f ∗〉 ≤ ‖d0δ∗f‖M‖f ∗‖M∗

for all f ∈ B1. Since ‖f ∗‖M∗ = ‖f‖p/q
M = ‖f‖p(1−1/p)

M = ‖f‖p−1
M , we have C‖f‖M ≤

‖d0δ∗f‖M for all f ∈ B1. This implies that d0δ∗(B1) is closed in B1.
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Suppose that d0δ∗(B1) is properly contained in B1. Then there exists f0 ∈ B1

such that ‖f0 − d0δ∗B1‖ > 0. Hence, by Hahn-Banach theorem, there exists

g̃1 ∈ (B1)∗ such that

‖g̃1‖(B1)∗ = 1, g̃1(f0) = ‖f0 − d0δ∗B1‖ and g̃1(d
0δ∗f) = 0

for all f ∈ B1. Thus, again by Hahn-Banach theorem, there exists g∗
2 ∈ (C1)∗

such that

‖g∗
2‖(C1)∗ = ‖g̃1‖(B1)∗ and g∗

2(f) = g̃1(f)

for all f ∈ B1. In particular, we have g∗
2(d

0δ∗f) = 0 for all f ∈ B1. On the

other hand, since B1 is a uniformly convex and uniformly smooth real Banach

space, we can take g1 ∈ B1 satisfying g̃1(g1) = ‖g̃1‖q
(B1)∗ = ‖g1‖p

M . Hence we have

g∗
2(g1) = g̃1(g1) = ‖g1‖p

M . Since (C1)∗ is isometrically isomorphic to C1
∗ , which is

a subspace of M∗, ‖g∗
2‖(C1)∗ = ‖g∗

2‖C1
∗ = ‖g∗

2‖M∗ . Therefore g∗
2(g1) = ‖g1‖p

M =

‖g∗
2‖

q
M∗

. Since the dual map of g∗
2 is unique by the smoothness of M∗, g1 must be

coincide with g2. By the assumption of the proposition, we have

0 = g∗
2(d

0δ∗g1) = 〈d0δ∗g1, g
∗
2〉 ≥ C〈g1, g

∗
2〉 = C‖g1‖p

C1 = C‖g̃1‖q
(B1)∗ = C > 0.

This is a contradiction. Thus d0δ∗(B1) = B1, that is, d0δ∗ is surjective.

Since C‖f‖M ≤ ‖d0δ∗f‖M for all f ∈ B1, d0δ∗ is bijective and has the inverse

(d0δ∗)−1 : B1 → B1. Moreover, we have ‖(d0δ∗)−1‖B1→B1 ≤ C−1, where ‖ ‖B1→B2

denotes the operator norm of an operator from a Banach space B1 into a Banach

space B2. Hence (d0δ∗)−1 is bounded.

We prove the proposition by contradiction. Suppose that there exists a non-

trivial u ∈ B satisfying

max
γ∈K

‖(d0u)(γ)‖ <
C

2
‖u‖.

Then we have

‖d0u‖p
M =

∑
γ∈K

‖(d0u)(γ)‖p deg(γ)

|T |
<

∑
γ∈K

(
C

2
‖u‖

)p
deg(γ)

|T |
=

(
C

2
‖u‖

)p

,

which gives ‖d0u‖M < C‖u‖/2. Let us consider δ∗(d0δ∗)−1d0u ∈ B. We obtain

‖δ∗(d0δ∗)−1d0u‖ ≤ ‖δ∗‖B1→B‖(d0δ∗)−1‖B1→B1‖d0u‖B1 < 2C−1C‖u‖/2 = ‖u‖,

where ‖ ‖B1 = ‖ ‖M . Thus δ∗(d0δ∗)−1d0u 6= u. On the other hand, we have

d0(δ∗(d0δ∗)−1d0u − u) = d0δ∗(d0δ∗)−1d0u − d0u = 0.

Hence u′ := δ∗(d0δ∗)−1d0u− u 6= 0 satisfies π(γ)u′ − u′ = 0 for all γ ∈ K, that is,

u′ is a non-trivial invariant vector. This contradicts the assumption on π. This

proves the proposition.
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5.2 Proof of Theorem 6

Let us define D : C1 → C2 and D∗ : C1
∗ → C2

∗ as follows:

(Df)(γ, γ′) := f(γ) − f(γ′), (D∗f∗)(γ, γ′) := f ∗(γ) − f ∗(γ′)

for each f ∈ C1, f ∗ ∈ C1
∗ and (γ, γ′) ∈ T .

Proposition 5.2.1. Every f ∈ C1 satisfies

〈Df,D∗f ∗〉 = 〈f, f ∗〉 +
1

3
〈d1f, δ1f∗〉.

Proof. We have

d1f(γ, γ′) = f(γ) − f(γ′) + π(γ)f(γ−1γ′) = (Df)(γ, γ′) + π(γ)f(γ−1γ′)

and similarly

δ1f∗(γ, γ′) = (D∗f ∗)(γ, γ′) + π∗(γ)f ∗(γ−1γ′)

for all (γ, γ′) ∈ T . These implies

〈(Df)(γ, γ′), (D∗f∗)(γ, γ′)〉
= 〈d1f(γ, γ′) − π(γ)f(γ−1γ′), δ1f ∗(γ, γ′) − π∗(γ)f ∗(γ−1γ′)〉
= 〈d1f(γ, γ′), δ1f∗(γ, γ′)〉 − 〈d1f(γ, γ′), π∗(γ)f∗(γ−1γ′)〉

−〈π(γ)f(γ−1γ′), δ1f ∗(γ, γ′)〉 + 〈π(γ)f(γ−1γ′), π∗(γ)f ∗(γ−1γ′)〉
= 〈d1f(γ, γ′), δ1f∗(γ, γ′)〉 − 〈d1f(γ, γ′), π∗(γ)f∗(γ−1γ′)〉

−〈π(γ)f(γ−1γ′), δ1f ∗(γ, γ′)〉 + 〈f(γ−1γ′), f ∗(γ−1γ′)〉

for all (γ, γ′) ∈ T . Thus we obtain

〈Df,D∗f ∗〉

=
∑

(γ,γ′)∈T

〈(Df)(γ, γ′), (D∗f∗)(γ, γ′)〉 1

|T |

= 〈d1f, δ1f ∗〉 −
∑

(γ,γ′)∈T

〈d1f(γ, γ′), π∗(γ)f ∗(γ−1γ′)〉 1

|T |

−
∑

(γ,γ′)∈T

〈π(γ)f(γ−1γ′), δ1f ∗(γ, γ′)〉 1

|T |
+

∑
(γ,γ′)∈T

〈f(γ−1γ′), f ∗(γ−1γ′)〉 1

|T |
.
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We have∑
(γ,γ′)∈T

〈f(γ−1γ′), f ∗(γ−1γ′)〉 1

|T |
=

∑
(γ−1,γ−1γ′)∈T

〈f(γ−1γ′), f ∗(γ−1γ′)〉 1

|T |

=
∑

(γ′′(γ′)−1,γ′′)∈T

〈f(γ′′), f ∗(γ′′)〉 1

|T |

=
∑

γ′′∈K

〈f(γ′′), f ∗(γ′′)〉deg(γ)

|T |

= 〈f, f ∗〉.

On the other hand, since

d1f(γ, γ′) = f(γ) − f(γ′) + π(γ)f(γ−1γ′)

= −π(γ)(−π(γ−1)f(γ) + π(γ−1)f(γ′) − f(γ−1γ′))

= −π(γ)(f(γ−1) − f(γ−1γ′) + π(γ−1)f(γ(γ−1γ′)))

= −π(γ)d1f(γ−1, γ−1γ′),

we get

〈d1f(γ, γ′), π∗(γ)f∗(γ−1γ′)〉 = 〈−π(γ)d1f(γ−1, γ−1γ′), π∗(γ)f∗(γ−1γ′)〉
= −〈d1f(γ−1, γ−1γ′), f ∗(γ−1γ′)〉

for all (γ, γ′) ∈ T . Thus we have∑
(γ,γ′)∈T

〈d1f(γ, γ′), π∗(γ)f ∗(γ−1γ′)〉 = −
∑

(γ,γ′)∈T

〈d1f(γ−1, γ−1γ′), f ∗(γ−1γ′)〉

= −
∑

(γ−1,γ−1γ′)∈T

〈d1f(γ−1, γ−1γ′), f ∗(γ−1γ′)〉

= −
∑

(γ,γ′)∈T

〈d1f(γ, γ′), f ∗(γ′)〉.

Also, since

d1f(γ, γ′) = f(γ) − f(γ′) + π(γ)f(γ−1γ′)

= −(f(γ′) − f(γ) − π(γ)(−π(γ−1γ′)f((γ′)−1γ)))

= −(f(γ′) − f(γ) + π(γ′)f((γ′)−1γ))

= −d1f(γ′, γ)

for all (γ, γ′) ∈ T , we obtain∑
(γ,γ′)∈T

〈d1f(γ, γ′), π∗(γ)f ∗(γ−1γ′)〉 =
∑

(γ,γ′)∈T

〈d1f(γ′, γ), f ∗(γ′)〉

=
∑

(γ,γ′)∈T

〈d1f(γ, γ′), f ∗(γ)〉.
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Therefore we obtain∑
(γ,γ′)∈T

〈d1f(γ, γ′), π∗(γ)f ∗(γ−1γ′)〉 1

|T |

=
1

3

∑
(γ,γ′)∈T

〈d1f(γ, γ′), π∗(γ)f∗(γ−1γ′) − f ∗(γ′) + f ∗(γ)〉 1

|T |

=
1

3

∑
(γ,γ′)∈T

〈d1f(γ, γ′), δ1f ∗(γ, γ′)〉 1

|T |

=
1

3
〈d1f, δ1f ∗〉.

Similarly we get∑
(γ,γ′)∈T

〈π(γ)f(γ−1γ′), δ1f ∗(γ, γ′)〉 1

|T |
=

1

3
〈d1f, δ1f ∗〉.

Therefore, we obtain

〈Df,D∗f∗〉 = 〈d1f, δ1f∗〉 − 1

3
〈d1f, δ1f ∗〉 − 1

3
〈d1f, δ1f ∗〉 + 〈f, f ∗〉

= 〈f, f ∗〉 +
1

3
〈d1f, δ1f∗〉.

Let ∆B be a discrete Laplacian acting on M defined as follows: For f ∈ M

(∆Bf)(γ) := f(γ) − 1

deg(γ)

∑
(γ,γ′)∈T

f(γ′)

for each γ ∈ K. We define P : M → M by

P (f)(γ) := f(γ) +
δ∗f

2
= f(γ) −

∑
γ′∈K

f(γ′)
deg(γ′)

|T |

for each f ∈ M and γ ∈ K. Similarly, we define a map P ∗ : M∗ → M∗ by

P ∗(g∗)(γ) := g∗(γ) +
d∗g∗

2
= g∗(γ) −

∑
γ′∈K

g∗(γ′)
deg(γ′)

|T |

for each g∗ ∈ M∗ and γ ∈ K.

Lemma 5.2.2. The map P is a projection from M into

{f ∈ M : 〈f, g∗〉 = 0 for any constant map g∗ ∈ M∗}.

Similarly, P ∗ is also a projection from M∗ into

{g∗ ∈ M∗ : 〈f, g∗〉 = 0 for any constant map f ∈ M}.
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Proof. For f ∈ M , we have

P (P (f))(γ)

= P (f)(γ) −
∑
γ′∈K

P (f)(γ′)
deg(γ′)

|T |

= f(γ) −
∑

γ′′∈K

f(γ′′)
deg(γ′′)

|T |
−

∑
γ′∈K

(
f(γ′) −

∑
γ′′∈K

f(γ′′)
deg(γ′′)

|T |

)
deg(γ′)

|T |

= f(γ) −
∑
γ′∈K

f(γ′)
deg(γ′)

|T |

= P (f)(γ)

for all γ ∈ K, that is, P is a projection. On the other hand, let f ∈ M , and let

g∗ ∈ M∗ be a constant map, that is, a map satisfying g∗(γ) = v∗ for some vector

v∗ ∈ B∗ and all γ ∈ K. Then we have

〈P (f), g∗〉 =
∑
γ∈K

〈
f(γ) −

∑
γ′∈K

f(γ′)
deg(γ′)

|T |
, g∗(γ)

〉
deg(γ)

|T |

=
∑
γ∈K

〈f(γ), v∗〉 deg(γ)

|T |
−

∑
γ∈K

〈∑
γ′∈K

f(γ′)
deg(γ′)

|T |
, v∗

〉
deg(γ)

|T |

=
∑
γ∈K

〈f(γ), v∗〉 deg(γ)

|T |
−

∑
γ′∈K

〈f(γ′), v∗〉 deg(γ′)

|T |
= 0.

This proves the lemma for P . A similar computation gives a proof for the case

of P ∗.

Let us introduce an invariant of L(K), which is the smallest positive eigenvalue

of the discrete Laplacian ∆B if B is a Hilbert space and p = 2.

Definition 5.2.3. We define

λB,p(L(K)) := inf
f∈M, 〈P (f),P ∗(f∗)〉6=0

〈∆B(P (f)), P ∗(f ∗)〉
〈P (f), P ∗(f ∗)〉

.

We emphasize that λB,p(L(K)) is independent of the linear isometric repre-

sentations of Γ on B.

Note that 〈∆B(P (f)), P ∗(f∗)〉 ≥ 0 and 〈P (f), P ∗(f ∗)〉 ≥ 0 for all f ∈ M .
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Indeed, for γ ∈ K,

∆B(P (f))(γ) = P (f)(γ) − 1

deg(γ)

∑
(γ,γ′)∈T

P (f)(γ′)

= f(γ) +
δ∗f

2
− 1

deg(γ)

∑
(γ,γ′)∈T

(
f(γ′) +

δ∗f

2

)
= f(γ) − 1

deg(γ)

∑
(γ,γ′)∈T

f(γ′).

Hence we have

〈∆B(P (f)), P ∗(f∗)〉

=
∑
γ∈K

〈
f(γ) − 1

deg(γ)

∑
(γ,γ′)∈T

f(γ′), f ∗(γ) −
∑

γ′′∈K

f∗(γ′′)
deg(γ′′)

|T |

〉
deg(γ)

|T |

= ‖f‖p
M −

∑
γ∈K

〈
f(γ),

∑
γ′′∈K

f∗(γ′′)
deg(γ′′)

|T |

〉
deg(γ)

|T |

−
∑
γ∈K

〈 ∑
(γ,γ′)∈T

f(γ′), f ∗(γ)

〉
1

|T |

+
∑
γ∈K

〈 ∑
(γ,γ′)∈T

f(γ′),
∑

γ′′∈K

f∗(γ′′)
deg(γ′′)

|T |

〉
1

|T |
.

Moreover, we obtain

∑
γ∈K

〈 ∑
(γ,γ′)∈T

f(γ′), f ∗(γ)

〉
1

|T |

=
∑

(γ,γ′)∈T

〈f(γ′), f ∗(γ)〉 1

|T |

≤
∑

(γ,γ′)∈T

‖f(γ′)‖‖f ∗(γ)‖B∗
1

|T |

≤

 ∑
(γ,γ′)∈T

‖f(γ′)‖p 1

|T |

1/p  ∑
(γ,γ′)∈T

‖f∗(γ)‖q
B∗

1

|T |

1/q

≤ ‖f‖M‖f∗‖M∗

= ‖f‖p
M
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and ∑
γ∈K

〈 ∑
(γ,γ′)∈T

f(γ′),
∑

γ′′∈K

f∗(γ′′)
deg(γ′′)

|T |

〉
1

|T |

=
∑
γ∈K

〈
f(γ),

∑
γ′′∈K

f ∗(γ′′)
deg(γ′′)

|T |

〉
deg(γ)

|T |
.

Hence 〈∆B(P (f)), P ∗(f∗)〉 ≥ 0. Using Hölder’s inequality, we have

〈P (f), P ∗(f ∗)〉
= 〈P (f), f ∗〉
= 〈f + δ∗f/2, f ∗〉

= ‖f‖p
M −

〈∑
γ∈K

f(γ)
deg(γ)

|T |
,

∑
γ′′∈K

f ∗(γ′′)
deg(γ′′)

|T |

〉

≥ ‖f‖p
M −

∥∥∥∥∥∑
γ∈K

f(γ)
deg(γ)

|T |

∥∥∥∥∥
∥∥∥∥∥ ∑

γ′′∈K

f ∗(γ′′)
deg(γ′′)

|T |

∥∥∥∥∥
B∗

≥ ‖f‖p
M −

∑
γ∈K

‖f(γ)‖deg(γ)

|T |
∑

γ′′∈K

‖f ∗(γ′′)‖B∗
deg(γ′′)

|T |

≥ ‖f‖p
M −

(∑
γ∈K

‖f(γ)‖p deg(γ)

|T |

)1/p ( ∑
γ′′∈K

‖f ∗(γ′′)‖q
B∗

deg(γ′′)

|T |

)1/q

= ‖f‖p
M − ‖f‖M‖f ∗‖M∗ = 0.

Lemma 5.2.4. Every f ∈ M satisfies 〈Df,D∗f∗〉 = 2〈∆Bf, f ∗〉.

Proof. By the definition of D and D∗, we compute

〈Df,D∗f∗〉 =
∑

(γ,γ′)∈T

〈f(γ) − f(γ′), f ∗(γ) − f ∗(γ′)〉 1

|T |

= 2
∑

(γ,γ′)∈T

〈f(γ) − f(γ′), f ∗(γ)〉 1

|T |

= 2
∑
γ∈K

〈
deg(γ)f(γ) −

∑
(γ,γ′)∈T

f(γ′), f ∗(γ)

〉
1

|T |

= 2
∑
γ∈K

〈
f(γ) − 1

deg(γ)

∑
(γ,γ′)∈T

f(γ′), f ∗(γ)

〉
deg(γ)

|T |

= 2〈∆Bf, f ∗〉.
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Proposition 5.2.5. Every f ∈ C1 satisfies

1

3
〈d1f, δ1f∗〉 +

λB, p(L(K))

2
〈δ∗f, d∗f ∗〉 ≥ (2λB, p(L(K)) − 1)〈f, f ∗〉.

Proof. By the definition of λB,p(L(K)) and Lemma 5.2.2, we have

〈∆B(P (f)), P ∗(f∗)〉 ≥ λB,p(L(K))〈P (f), P ∗(f∗)〉
= λB,p(L(K)) 〈P (f), f ∗〉

= λB,p(L(K))

〈
f +

δ∗f

2
, f ∗

〉
= λB,p(L(K))

(
〈f, f ∗〉 +

∑
γ∈K

〈
δ∗f

2
, f ∗(γ)

〉
deg(γ)

|T |

)

= λB,p(L(K))

(
〈f, f ∗〉 −

〈
δ∗f

2
,
d∗f ∗

2

〉)
= λB,p(L(K)) 〈f, f ∗〉 − λB,p(L(K))

4
〈δ∗f, d∗f ∗〉.

Using Lemma 5.2.4 and Proposition 5.2.1, we obtain

(2λB,p(L(K)) − 1)〈f, f ∗〉
= 2λB,p(L(K))〈f, f ∗〉 − 〈f, f ∗〉

≤ 2

(
〈∆B(P (f)), P ∗(f∗)〉 +

λB,p(L(K))

4
〈δ∗f, d∗f∗〉

)
− 〈f, f ∗〉

= 〈Df,D∗f ∗〉 +
λB,p(L(K))

2
〈δ∗f, d∗f ∗〉 − 〈f, f ∗〉

= 〈f, f ∗〉 +
1

3
〈d1f, δ1f ∗〉 +

λB,p(L(K))

2
〈δ∗f, d∗f ∗〉 − 〈f, f ∗〉

=
1

3
〈d1f, δ1f∗〉 +

λB,p(L(K))

2
〈δ∗f, d∗f ∗〉.

Theorem 6. If λB/B̃, p(L(K)) > 1/2 for every closed subspace B̃ of B, then Γ

has Property (TB).

Proof. We should show that, for any non-trivial linear isometric representation

π of Γ on B, there exists C > 0 such that maxγ∈K ‖u − π′(γ)u‖ ≥ C‖u‖ for all

u ∈ B′ = B/Bπ(Γ). Note that the representation π′ of Γ on B′ has no non-trivial

vector. Applying Proposition 5.2.5 to B′ and π′, we obtain

〈δ∗f, d∗f ∗〉 ≥ 2

(
2 − 1

λB′, p(L(K)

)
〈f, f ∗〉
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for f ∈ B1. By Proposition 5.1.8, if λB′, p(L(K)) > 1/2, we obtain

max
γ∈K

‖u − π′(γ)u‖ ≥ (2 − 1/λB′, p(L(K)))‖u‖

for all u ∈ B′. This completes the proof.
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